Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{c-3ay^{2}}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{C}\text{, }&c=3ay^{2}\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{bx+c}{3y^{2}}\text{, }&\left(c\neq 0\text{ or }x\neq 0\right)\text{ and }\left(x=0\text{ or }b\neq -\frac{c}{x}\right)\text{ and }\left(b\neq 0\text{ or }c\neq 0\right)\text{ and }y\neq 0\text{ and }c\neq -bx\\a\neq 0\text{, }&y=0\text{ and }c=-bx\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{c-3ay^{2}}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{R}\text{, }&c=3ay^{2}\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
bx+c=3ay^{2}
Multiply both sides of the equation by 3a.
bx=3ay^{2}-c
Subtract c from both sides.
xb=3ay^{2}-c
The equation is in standard form.
\frac{xb}{x}=\frac{3ay^{2}-c}{x}
Divide both sides by x.
b=\frac{3ay^{2}-c}{x}
Dividing by x undoes the multiplication by x.
bx+c=3ay^{2}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3a.
3ay^{2}=bx+c
Swap sides so that all variable terms are on the left hand side.
3y^{2}a=bx+c
The equation is in standard form.
\frac{3y^{2}a}{3y^{2}}=\frac{bx+c}{3y^{2}}
Divide both sides by 3y^{2}.
a=\frac{bx+c}{3y^{2}}
Dividing by 3y^{2} undoes the multiplication by 3y^{2}.
a=\frac{bx+c}{3y^{2}}\text{, }a\neq 0
Variable a cannot be equal to 0.
bx+c=3ay^{2}
Multiply both sides of the equation by 3a.
bx=3ay^{2}-c
Subtract c from both sides.
xb=3ay^{2}-c
The equation is in standard form.
\frac{xb}{x}=\frac{3ay^{2}-c}{x}
Divide both sides by x.
b=\frac{3ay^{2}-c}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}