Solve for b
\left\{\begin{matrix}b=-\frac{10b_{1}h_{1}+60h-627}{10h_{2}}\text{, }&h_{2}\neq 0\\b\in \mathrm{R}\text{, }&h=-\frac{b_{1}h_{1}}{6}+\frac{209}{20}\text{ and }h_{2}=0\end{matrix}\right.
Solve for b_1
\left\{\begin{matrix}b_{1}=-\frac{10bh_{2}+60h-627}{10h_{1}}\text{, }&h_{1}\neq 0\\b_{1}\in \mathrm{R}\text{, }&h=-\frac{bh_{2}}{6}+\frac{209}{20}\text{ and }h_{1}=0\end{matrix}\right.
Share
Copied to clipboard
b_{1}h_{1}+3h+3h+bh_{2}=62.7
Multiply both sides of the equation by 2.
b_{1}h_{1}+6h+bh_{2}=62.7
Combine 3h and 3h to get 6h.
6h+bh_{2}=62.7-b_{1}h_{1}
Subtract b_{1}h_{1} from both sides.
bh_{2}=62.7-b_{1}h_{1}-6h
Subtract 6h from both sides.
h_{2}b=62.7-6h-b_{1}h_{1}
The equation is in standard form.
\frac{h_{2}b}{h_{2}}=\frac{62.7-6h-b_{1}h_{1}}{h_{2}}
Divide both sides by h_{2}.
b=\frac{62.7-6h-b_{1}h_{1}}{h_{2}}
Dividing by h_{2} undoes the multiplication by h_{2}.
b_{1}h_{1}+3h+3h+bh_{2}=62.7
Multiply both sides of the equation by 2.
b_{1}h_{1}+6h+bh_{2}=62.7
Combine 3h and 3h to get 6h.
b_{1}h_{1}+bh_{2}=62.7-6h
Subtract 6h from both sides.
b_{1}h_{1}=62.7-6h-bh_{2}
Subtract bh_{2} from both sides.
h_{1}b_{1}=62.7-6h-bh_{2}
The equation is in standard form.
\frac{h_{1}b_{1}}{h_{1}}=\frac{62.7-6h-bh_{2}}{h_{1}}
Divide both sides by h_{1}.
b_{1}=\frac{62.7-6h-bh_{2}}{h_{1}}
Dividing by h_{1} undoes the multiplication by h_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}