Evaluate
\frac{2ab+2b^{3}+15b^{2}+39b-36}{6ab}
Expand
\frac{2ab+2b^{3}+15b^{2}+39b-36}{6ab}
Share
Copied to clipboard
\frac{b-3}{ab}+\frac{b-3}{ab}+\frac{a+b^{2}}{3a}+\frac{9+5b}{2a}
Multiply b and b to get b^{2}.
2\times \frac{b-3}{ab}+\frac{a+b^{2}}{3a}+\frac{9+5b}{2a}
Combine \frac{b-3}{ab} and \frac{b-3}{ab} to get 2\times \frac{b-3}{ab}.
2\times \frac{b-3}{ab}+\frac{2\left(a+b^{2}\right)}{6a}+\frac{3\left(9+5b\right)}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 2a is 6a. Multiply \frac{a+b^{2}}{3a} times \frac{2}{2}. Multiply \frac{9+5b}{2a} times \frac{3}{3}.
2\times \frac{b-3}{ab}+\frac{2\left(a+b^{2}\right)+3\left(9+5b\right)}{6a}
Since \frac{2\left(a+b^{2}\right)}{6a} and \frac{3\left(9+5b\right)}{6a} have the same denominator, add them by adding their numerators.
2\times \frac{b-3}{ab}+\frac{2a+2b^{2}+27+15b}{6a}
Do the multiplications in 2\left(a+b^{2}\right)+3\left(9+5b\right).
\frac{2\left(b-3\right)}{ab}+\frac{2a+2b^{2}+27+15b}{6a}
Express 2\times \frac{b-3}{ab} as a single fraction.
\frac{6\times 2\left(b-3\right)}{6ab}+\frac{\left(2a+2b^{2}+27+15b\right)b}{6ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab and 6a is 6ab. Multiply \frac{2\left(b-3\right)}{ab} times \frac{6}{6}. Multiply \frac{2a+2b^{2}+27+15b}{6a} times \frac{b}{b}.
\frac{6\times 2\left(b-3\right)+\left(2a+2b^{2}+27+15b\right)b}{6ab}
Since \frac{6\times 2\left(b-3\right)}{6ab} and \frac{\left(2a+2b^{2}+27+15b\right)b}{6ab} have the same denominator, add them by adding their numerators.
\frac{12b-36+2ab+2b^{3}+27b+15b^{2}}{6ab}
Do the multiplications in 6\times 2\left(b-3\right)+\left(2a+2b^{2}+27+15b\right)b.
\frac{39b-36+2ab+2b^{3}+15b^{2}}{6ab}
Combine like terms in 12b-36+2ab+2b^{3}+27b+15b^{2}.
\frac{b-3}{ab}+\frac{b-3}{ab}+\frac{a+b^{2}}{3a}+\frac{9+5b}{2a}
Multiply b and b to get b^{2}.
2\times \frac{b-3}{ab}+\frac{a+b^{2}}{3a}+\frac{9+5b}{2a}
Combine \frac{b-3}{ab} and \frac{b-3}{ab} to get 2\times \frac{b-3}{ab}.
2\times \frac{b-3}{ab}+\frac{2\left(a+b^{2}\right)}{6a}+\frac{3\left(9+5b\right)}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 2a is 6a. Multiply \frac{a+b^{2}}{3a} times \frac{2}{2}. Multiply \frac{9+5b}{2a} times \frac{3}{3}.
2\times \frac{b-3}{ab}+\frac{2\left(a+b^{2}\right)+3\left(9+5b\right)}{6a}
Since \frac{2\left(a+b^{2}\right)}{6a} and \frac{3\left(9+5b\right)}{6a} have the same denominator, add them by adding their numerators.
2\times \frac{b-3}{ab}+\frac{2a+2b^{2}+27+15b}{6a}
Do the multiplications in 2\left(a+b^{2}\right)+3\left(9+5b\right).
\frac{2\left(b-3\right)}{ab}+\frac{2a+2b^{2}+27+15b}{6a}
Express 2\times \frac{b-3}{ab} as a single fraction.
\frac{6\times 2\left(b-3\right)}{6ab}+\frac{\left(2a+2b^{2}+27+15b\right)b}{6ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab and 6a is 6ab. Multiply \frac{2\left(b-3\right)}{ab} times \frac{6}{6}. Multiply \frac{2a+2b^{2}+27+15b}{6a} times \frac{b}{b}.
\frac{6\times 2\left(b-3\right)+\left(2a+2b^{2}+27+15b\right)b}{6ab}
Since \frac{6\times 2\left(b-3\right)}{6ab} and \frac{\left(2a+2b^{2}+27+15b\right)b}{6ab} have the same denominator, add them by adding their numerators.
\frac{12b-36+2ab+2b^{3}+27b+15b^{2}}{6ab}
Do the multiplications in 6\times 2\left(b-3\right)+\left(2a+2b^{2}+27+15b\right)b.
\frac{39b-36+2ab+2b^{3}+15b^{2}}{6ab}
Combine like terms in 12b-36+2ab+2b^{3}+27b+15b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}