Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{b-3}{8b^{4}}-\frac{3b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}}-\frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8b^{4} and \left(b-3\right)\left(b+3\right) is 8\left(b-3\right)\left(b+3\right)b^{4}. Multiply \frac{b-3}{8b^{4}} times \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}. Multiply \frac{3b}{\left(b-3\right)\left(b+3\right)} times \frac{8b^{4}}{8b^{4}}.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Since \frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}} and \frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Do the multiplications in \left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8b^{6}-72b^{4}}
Expand 8\left(b-3\right)\left(b+3\right)b^{4}.
\frac{b-3}{8b^{4}}-\frac{3b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}}-\frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8b^{4} and \left(b-3\right)\left(b+3\right) is 8\left(b-3\right)\left(b+3\right)b^{4}. Multiply \frac{b-3}{8b^{4}} times \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}. Multiply \frac{3b}{\left(b-3\right)\left(b+3\right)} times \frac{8b^{4}}{8b^{4}}.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Since \frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}} and \frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Do the multiplications in \left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8b^{6}-72b^{4}}
Expand 8\left(b-3\right)\left(b+3\right)b^{4}.