Evaluate
\frac{27-9b-3b^{2}+b^{3}-24b^{5}}{8\left(b^{2}-9\right)b^{4}}
Expand
-\frac{24b^{5}-b^{3}+3b^{2}+9b-27}{8\left(b^{2}-9\right)b^{4}}
Quiz
Polynomial
5 problems similar to:
\frac { b - 3 } { 8 b ^ { 4 } } - \frac { 3 b } { b ^ { 2 } - 9 }
Share
Copied to clipboard
\frac{b-3}{8b^{4}}-\frac{3b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}}-\frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8b^{4} and \left(b-3\right)\left(b+3\right) is 8\left(b-3\right)\left(b+3\right)b^{4}. Multiply \frac{b-3}{8b^{4}} times \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}. Multiply \frac{3b}{\left(b-3\right)\left(b+3\right)} times \frac{8b^{4}}{8b^{4}}.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Since \frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}} and \frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Do the multiplications in \left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8b^{6}-72b^{4}}
Expand 8\left(b-3\right)\left(b+3\right)b^{4}.
\frac{b-3}{8b^{4}}-\frac{3b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}}-\frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8b^{4} and \left(b-3\right)\left(b+3\right) is 8\left(b-3\right)\left(b+3\right)b^{4}. Multiply \frac{b-3}{8b^{4}} times \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}. Multiply \frac{3b}{\left(b-3\right)\left(b+3\right)} times \frac{8b^{4}}{8b^{4}}.
\frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Since \frac{\left(b-3\right)\left(b-3\right)\left(b+3\right)}{8\left(b-3\right)\left(b+3\right)b^{4}} and \frac{3b\times 8b^{4}}{8\left(b-3\right)\left(b+3\right)b^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8\left(b-3\right)\left(b+3\right)b^{4}}
Do the multiplications in \left(b-3\right)\left(b-3\right)\left(b+3\right)-3b\times 8b^{4}.
\frac{b^{3}-9b-3b^{2}+27-24b^{5}}{8b^{6}-72b^{4}}
Expand 8\left(b-3\right)\left(b+3\right)b^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}