Evaluate
\frac{\left(b-25\right)\left(b+8\right)}{25-b^{2}}
Expand
\frac{b^{2}-17b-200}{25-b^{2}}
Quiz
Polynomial
\frac { b - 25 } { b ^ { 2 } + b - 20 } \div \frac { 5 - b } { b ^ { 2 } + 4 b - 32 }
Share
Copied to clipboard
\frac{\left(b-25\right)\left(b^{2}+4b-32\right)}{\left(b^{2}+b-20\right)\left(5-b\right)}
Divide \frac{b-25}{b^{2}+b-20} by \frac{5-b}{b^{2}+4b-32} by multiplying \frac{b-25}{b^{2}+b-20} by the reciprocal of \frac{5-b}{b^{2}+4b-32}.
\frac{\left(b-25\right)\left(b-4\right)\left(b+8\right)}{\left(b-4\right)\left(b+5\right)\left(-b+5\right)}
Factor the expressions that are not already factored.
\frac{\left(b-25\right)\left(b+8\right)}{\left(b+5\right)\left(-b+5\right)}
Cancel out b-4 in both numerator and denominator.
\frac{b^{2}-17b-200}{-b^{2}+25}
Expand the expression.
\frac{\left(b-25\right)\left(b^{2}+4b-32\right)}{\left(b^{2}+b-20\right)\left(5-b\right)}
Divide \frac{b-25}{b^{2}+b-20} by \frac{5-b}{b^{2}+4b-32} by multiplying \frac{b-25}{b^{2}+b-20} by the reciprocal of \frac{5-b}{b^{2}+4b-32}.
\frac{\left(b-25\right)\left(b-4\right)\left(b+8\right)}{\left(b-4\right)\left(b+5\right)\left(-b+5\right)}
Factor the expressions that are not already factored.
\frac{\left(b-25\right)\left(b+8\right)}{\left(b+5\right)\left(-b+5\right)}
Cancel out b-4 in both numerator and denominator.
\frac{b^{2}-17b-200}{-b^{2}+25}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}