Evaluate
\frac{b^{2}-6b-66}{b\left(b^{2}-121\right)}
Differentiate w.r.t. b
\frac{-b^{4}+12b^{3}+77b^{2}-7986}{\left(b\left(b^{2}-121\right)\right)^{2}}
Quiz
Polynomial
5 problems similar to:
\frac { b } { b ^ { 2 } - 121 } - \frac { 6 } { b ^ { 2 } - 11 b }
Share
Copied to clipboard
\frac{b}{\left(b-11\right)\left(b+11\right)}-\frac{6}{b\left(b-11\right)}
Factor b^{2}-121. Factor b^{2}-11b.
\frac{bb}{b\left(b-11\right)\left(b+11\right)}-\frac{6\left(b+11\right)}{b\left(b-11\right)\left(b+11\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-11\right)\left(b+11\right) and b\left(b-11\right) is b\left(b-11\right)\left(b+11\right). Multiply \frac{b}{\left(b-11\right)\left(b+11\right)} times \frac{b}{b}. Multiply \frac{6}{b\left(b-11\right)} times \frac{b+11}{b+11}.
\frac{bb-6\left(b+11\right)}{b\left(b-11\right)\left(b+11\right)}
Since \frac{bb}{b\left(b-11\right)\left(b+11\right)} and \frac{6\left(b+11\right)}{b\left(b-11\right)\left(b+11\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}-6b-66}{b\left(b-11\right)\left(b+11\right)}
Do the multiplications in bb-6\left(b+11\right).
\frac{b^{2}-6b-66}{b^{3}-121b}
Expand b\left(b-11\right)\left(b+11\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}