Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{b}{\left(a+b\right)\left(a-b\right)}+1-\frac{a}{a+b}
Factor a^{2}-b^{2}.
\frac{b}{\left(a+b\right)\left(a-b\right)}+\frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{a}{a+b}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}.
\frac{b+\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{a}{a+b}
Since \frac{b}{\left(a+b\right)\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{b+a^{2}-ab+ba-b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{a}{a+b}
Do the multiplications in b+\left(a+b\right)\left(a-b\right).
\frac{b+a^{2}-b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{a}{a+b}
Combine like terms in b+a^{2}-ab+ba-b^{2}.
\frac{b+a^{2}-b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{a}{a+b} times \frac{a-b}{a-b}.
\frac{b+a^{2}-b^{2}-a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Since \frac{b+a^{2}-b^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{b+a^{2}-b^{2}-a^{2}+ab}{\left(a+b\right)\left(a-b\right)}
Do the multiplications in b+a^{2}-b^{2}-a\left(a-b\right).
\frac{b+ab-b^{2}}{\left(a+b\right)\left(a-b\right)}
Combine like terms in b+a^{2}-b^{2}-a^{2}+ab.
\frac{b+ab-b^{2}}{a^{2}-b^{2}}
Expand \left(a+b\right)\left(a-b\right).