Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{b}{a\left(a+b\right)}-\frac{a}{b\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
Factor a^{2}+ab. Factor b^{2}-ab.
\frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+b\right) and b\left(-a+b\right) is ab\left(a+b\right)\left(-a+b\right). Multiply \frac{b}{a\left(a+b\right)} times \frac{b\left(-a+b\right)}{b\left(-a+b\right)}. Multiply \frac{a}{b\left(-a+b\right)} times \frac{a\left(a+b\right)}{a\left(a+b\right)}.
\frac{bb\left(-a+b\right)-aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
Since \frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} and \frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
Do the multiplications in bb\left(-a+b\right)-aa\left(a+b\right).
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)}
Factor a^{2}b-b^{3}.
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)}-\frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab\left(a+b\right)\left(-a+b\right) and b\left(a+b\right)\left(a-b\right) is ab\left(a+b\right)\left(a-b\right). Multiply \frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)} times \frac{-1}{-1}. Multiply \frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)} times \frac{a}{a}.
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
Since \frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)} and \frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a}{ab\left(a+b\right)\left(a-b\right)}
Do the multiplications in -\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a.
\frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)}
Combine like terms in b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a.
\frac{b\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored in \frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)}.
\frac{1}{a}
Cancel out b\left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{b}{a\left(a+b\right)}-\frac{a}{b\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
Factor a^{2}+ab. Factor b^{2}-ab.
\frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+b\right) and b\left(-a+b\right) is ab\left(a+b\right)\left(-a+b\right). Multiply \frac{b}{a\left(a+b\right)} times \frac{b\left(-a+b\right)}{b\left(-a+b\right)}. Multiply \frac{a}{b\left(-a+b\right)} times \frac{a\left(a+b\right)}{a\left(a+b\right)}.
\frac{bb\left(-a+b\right)-aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
Since \frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} and \frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
Do the multiplications in bb\left(-a+b\right)-aa\left(a+b\right).
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)}
Factor a^{2}b-b^{3}.
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)}-\frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab\left(a+b\right)\left(-a+b\right) and b\left(a+b\right)\left(a-b\right) is ab\left(a+b\right)\left(a-b\right). Multiply \frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)} times \frac{-1}{-1}. Multiply \frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)} times \frac{a}{a}.
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
Since \frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)} and \frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a}{ab\left(a+b\right)\left(a-b\right)}
Do the multiplications in -\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a.
\frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)}
Combine like terms in b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a.
\frac{b\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored in \frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)}.
\frac{1}{a}
Cancel out b\left(a+b\right)\left(a-b\right) in both numerator and denominator.