Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bx}{2}+\frac{y}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{2\left(ax-y\right)}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx}{2}+\frac{y}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{2\left(ax-y\right)}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
bx^{2}+2ax-2y=0
Multiply both sides of the equation by 2.
2ax-2y=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
2ax=-bx^{2}+2y
Add 2y to both sides.
2xa=2y-bx^{2}
The equation is in standard form.
\frac{2xa}{2x}=\frac{2y-bx^{2}}{2x}
Divide both sides by 2x.
a=\frac{2y-bx^{2}}{2x}
Dividing by 2x undoes the multiplication by 2x.
a=-\frac{bx}{2}+\frac{y}{x}
Divide -bx^{2}+2y by 2x.
bx^{2}+2ax-2y=0
Multiply both sides of the equation by 2.
bx^{2}-2y=-2ax
Subtract 2ax from both sides. Anything subtracted from zero gives its negation.
bx^{2}=-2ax+2y
Add 2y to both sides.
x^{2}b=2y-2ax
The equation is in standard form.
\frac{x^{2}b}{x^{2}}=\frac{2y-2ax}{x^{2}}
Divide both sides by x^{2}.
b=\frac{2y-2ax}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
b=\frac{2\left(y-ax\right)}{x^{2}}
Divide -2ax+2y by x^{2}.
bx^{2}+2ax-2y=0
Multiply both sides of the equation by 2.
2ax-2y=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
2ax=-bx^{2}+2y
Add 2y to both sides.
2xa=2y-bx^{2}
The equation is in standard form.
\frac{2xa}{2x}=\frac{2y-bx^{2}}{2x}
Divide both sides by 2x.
a=\frac{2y-bx^{2}}{2x}
Dividing by 2x undoes the multiplication by 2x.
a=-\frac{bx}{2}+\frac{y}{x}
Divide -bx^{2}+2y by 2x.
bx^{2}+2ax-2y=0
Multiply both sides of the equation by 2.
bx^{2}-2y=-2ax
Subtract 2ax from both sides. Anything subtracted from zero gives its negation.
bx^{2}=-2ax+2y
Add 2y to both sides.
x^{2}b=2y-2ax
The equation is in standard form.
\frac{x^{2}b}{x^{2}}=\frac{2y-2ax}{x^{2}}
Divide both sides by x^{2}.
b=\frac{2y-2ax}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
b=\frac{2\left(y-ax\right)}{x^{2}}
Divide -2ax+2y by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}