Evaluate
\frac{b^{3}-6ab+3b^{2}+6a-3b-9}{\left(b-3\right)\left(9+b^{2}-6a\right)}
Expand
\frac{b^{3}-6ab+3b^{2}+6a-3b-9}{\left(b-3\right)\left(9+b^{2}-6a\right)}
Share
Copied to clipboard
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-3\right)\left(b+1\right)}+\frac{4b}{b^{2}-6a+9}
Factor the expressions that are not already factored in \frac{b^{2}-1}{b^{2}-2b-3}.
\frac{b-1}{b-3}+\frac{4b}{b^{2}-6a+9}
Cancel out b+1 in both numerator and denominator.
\frac{\left(b-1\right)\left(-6a+b^{2}+9\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)}+\frac{4b\left(b-3\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-3 and b^{2}-6a+9 is \left(b-3\right)\left(-6a+b^{2}+9\right). Multiply \frac{b-1}{b-3} times \frac{-6a+b^{2}+9}{-6a+b^{2}+9}. Multiply \frac{4b}{b^{2}-6a+9} times \frac{b-3}{b-3}.
\frac{\left(b-1\right)\left(-6a+b^{2}+9\right)+4b\left(b-3\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
Since \frac{\left(b-1\right)\left(-6a+b^{2}+9\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)} and \frac{4b\left(b-3\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)} have the same denominator, add them by adding their numerators.
\frac{-6ba+b^{3}+9b+6a-b^{2}-9+4b^{2}-12b}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
Do the multiplications in \left(b-1\right)\left(-6a+b^{2}+9\right)+4b\left(b-3\right).
\frac{-6ba+b^{3}-3b+6a+3b^{2}-9}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
Combine like terms in -6ba+b^{3}+9b+6a-b^{2}-9+4b^{2}-12b.
\frac{-6ba+b^{3}-3b+6a+3b^{2}-9}{-6ab+18a+b^{3}-3b^{2}+9b-27}
Expand \left(b-3\right)\left(-6a+b^{2}+9\right).
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-3\right)\left(b+1\right)}+\frac{4b}{b^{2}-6a+9}
Factor the expressions that are not already factored in \frac{b^{2}-1}{b^{2}-2b-3}.
\frac{b-1}{b-3}+\frac{4b}{b^{2}-6a+9}
Cancel out b+1 in both numerator and denominator.
\frac{\left(b-1\right)\left(-6a+b^{2}+9\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)}+\frac{4b\left(b-3\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-3 and b^{2}-6a+9 is \left(b-3\right)\left(-6a+b^{2}+9\right). Multiply \frac{b-1}{b-3} times \frac{-6a+b^{2}+9}{-6a+b^{2}+9}. Multiply \frac{4b}{b^{2}-6a+9} times \frac{b-3}{b-3}.
\frac{\left(b-1\right)\left(-6a+b^{2}+9\right)+4b\left(b-3\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
Since \frac{\left(b-1\right)\left(-6a+b^{2}+9\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)} and \frac{4b\left(b-3\right)}{\left(b-3\right)\left(-6a+b^{2}+9\right)} have the same denominator, add them by adding their numerators.
\frac{-6ba+b^{3}+9b+6a-b^{2}-9+4b^{2}-12b}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
Do the multiplications in \left(b-1\right)\left(-6a+b^{2}+9\right)+4b\left(b-3\right).
\frac{-6ba+b^{3}-3b+6a+3b^{2}-9}{\left(b-3\right)\left(-6a+b^{2}+9\right)}
Combine like terms in -6ba+b^{3}+9b+6a-b^{2}-9+4b^{2}-12b.
\frac{-6ba+b^{3}-3b+6a+3b^{2}-9}{-6ab+18a+b^{3}-3b^{2}+9b-27}
Expand \left(b-3\right)\left(-6a+b^{2}+9\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}