Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{b^{2}}{a+b}}{\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{ab\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{b}{a-b} times \frac{a+b}{a+b}. Multiply \frac{ab}{a+b} times \frac{a-b}{a-b}.
\frac{\frac{b^{2}}{a+b}}{\frac{b\left(a+b\right)-ab\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}
Since \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{ab\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b^{2}}{a+b}}{\frac{ba+b^{2}-a^{2}b+ab^{2}}{\left(a+b\right)\left(a-b\right)}}
Do the multiplications in b\left(a+b\right)-ab\left(a-b\right).
\frac{b^{2}\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(ba+b^{2}-a^{2}b+ab^{2}\right)}
Divide \frac{b^{2}}{a+b} by \frac{ba+b^{2}-a^{2}b+ab^{2}}{\left(a+b\right)\left(a-b\right)} by multiplying \frac{b^{2}}{a+b} by the reciprocal of \frac{ba+b^{2}-a^{2}b+ab^{2}}{\left(a+b\right)\left(a-b\right)}.
\frac{\left(a-b\right)b^{2}}{ab^{2}+ab+b^{2}-ba^{2}}
Cancel out a+b in both numerator and denominator.
\frac{\left(a-b\right)b^{2}}{b\left(-a^{2}+ab+a+b\right)}
Factor the expressions that are not already factored.
\frac{b\left(a-b\right)}{-a^{2}+ab+a+b}
Cancel out b in both numerator and denominator.
\frac{ab-b^{2}}{-a^{2}+ab+a+b}
Expand the expression.