Evaluate
\frac{b\left(a-b\right)}{b+a+ab-a^{2}}
Differentiate w.r.t. b
\frac{2ba^{2}-b^{2}-2ab-ab^{2}+a^{2}-a^{3}}{\left(b+a+ab-a^{2}\right)^{2}}
Share
Copied to clipboard
\frac{\frac{b^{2}}{a+b}}{\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{ab\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{b}{a-b} times \frac{a+b}{a+b}. Multiply \frac{ab}{a+b} times \frac{a-b}{a-b}.
\frac{\frac{b^{2}}{a+b}}{\frac{b\left(a+b\right)-ab\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}
Since \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{ab\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b^{2}}{a+b}}{\frac{ba+b^{2}-a^{2}b+ab^{2}}{\left(a+b\right)\left(a-b\right)}}
Do the multiplications in b\left(a+b\right)-ab\left(a-b\right).
\frac{b^{2}\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(ba+b^{2}-a^{2}b+ab^{2}\right)}
Divide \frac{b^{2}}{a+b} by \frac{ba+b^{2}-a^{2}b+ab^{2}}{\left(a+b\right)\left(a-b\right)} by multiplying \frac{b^{2}}{a+b} by the reciprocal of \frac{ba+b^{2}-a^{2}b+ab^{2}}{\left(a+b\right)\left(a-b\right)}.
\frac{\left(a-b\right)b^{2}}{ab^{2}+ab+b^{2}-ba^{2}}
Cancel out a+b in both numerator and denominator.
\frac{\left(a-b\right)b^{2}}{b\left(-a^{2}+ab+a+b\right)}
Factor the expressions that are not already factored.
\frac{b\left(a-b\right)}{-a^{2}+ab+a+b}
Cancel out b in both numerator and denominator.
\frac{ab-b^{2}}{-a^{2}+ab+a+b}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}