Evaluate
\frac{b^{3}}{30}+\frac{3}{b}
Factor
\frac{b^{4}+90}{30b}
Share
Copied to clipboard
\frac{b^{2}\times 12}{4b^{3}}+\frac{b}{10}\times \frac{b^{2}}{3}
Divide \frac{b^{2}}{4} by \frac{b^{3}}{12} by multiplying \frac{b^{2}}{4} by the reciprocal of \frac{b^{3}}{12}.
\frac{3}{b}+\frac{b}{10}\times \frac{b^{2}}{3}
Cancel out 4b^{2} in both numerator and denominator.
\frac{3}{b}+\frac{bb^{2}}{10\times 3}
Multiply \frac{b}{10} times \frac{b^{2}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 30}{30b}+\frac{bb^{2}b}{30b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and 10\times 3 is 30b. Multiply \frac{3}{b} times \frac{30}{30}. Multiply \frac{bb^{2}}{10\times 3} times \frac{b}{b}.
\frac{3\times 30+bb^{2}b}{30b}
Since \frac{3\times 30}{30b} and \frac{bb^{2}b}{30b} have the same denominator, add them by adding their numerators.
\frac{90+b^{4}}{30b}
Do the multiplications in 3\times 30+bb^{2}b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}