Evaluate
-\left(2a+b\right)
Differentiate w.r.t. b
-1
Quiz
Algebra
5 problems similar to:
\frac { b ^ { 2 } } { 2 a - b } + \frac { 4 a ^ { 2 } } { b - 2 a }
Share
Copied to clipboard
\frac{b^{2}}{2a-b}+\frac{-4a^{2}}{2a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a-b and b-2a is 2a-b. Multiply \frac{4a^{2}}{b-2a} times \frac{-1}{-1}.
\frac{b^{2}-4a^{2}}{2a-b}
Since \frac{b^{2}}{2a-b} and \frac{-4a^{2}}{2a-b} have the same denominator, add them by adding their numerators.
\frac{\left(-2a+b\right)\left(2a+b\right)}{2a-b}
Factor the expressions that are not already factored in \frac{b^{2}-4a^{2}}{2a-b}.
\frac{-\left(2a+b\right)\left(2a-b\right)}{2a-b}
Extract the negative sign in b-2a.
-\left(2a+b\right)
Cancel out 2a-b in both numerator and denominator.
-2a-b
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}