Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{b^{-\left(-\frac{1}{2}\right)}b^{\frac{-1}{2}}}{b^{\frac{1}{3}}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{b^{\frac{1}{2}}b^{\frac{-1}{2}}}{b^{\frac{1}{3}}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{b^{\frac{1}{2}}b^{-\frac{1}{2}}}{b^{\frac{1}{3}}}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{1}{b^{\frac{1}{3}}}
Multiply b^{\frac{1}{2}} and b^{-\frac{1}{2}} to get 1.
\frac{1}{\sqrt[3]{b}}
Use the rules of exponents to simplify the expression.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{-\left(-\frac{1}{2}\right)}b^{\frac{-1}{2}}}{b^{\frac{1}{3}}})
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{\frac{1}{2}}b^{\frac{-1}{2}}}{b^{\frac{1}{3}}})
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{\frac{1}{2}}b^{-\frac{1}{2}}}{b^{\frac{1}{3}}})
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{b^{\frac{1}{3}}})
Multiply b^{\frac{1}{2}} and b^{-\frac{1}{2}} to get 1.
-\left(\sqrt[3]{b}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}b}(\sqrt[3]{b})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\sqrt[3]{b}\right)^{-2}\times \frac{1}{3}b^{\frac{1}{3}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{1}{3}b^{-\frac{2}{3}}\left(\sqrt[3]{b}\right)^{-2}
Simplify.