Evaluate
\frac{3\left(b+27\right)}{b^{2}+54}
Expand
\frac{3\left(b+27\right)}{b^{2}+54}
Share
Copied to clipboard
\frac{\frac{b}{3}+\frac{9\times 3}{3}}{\left(\frac{b}{3}\right)^{2}+6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{3}{3}.
\frac{\frac{b+9\times 3}{3}}{\left(\frac{b}{3}\right)^{2}+6}
Since \frac{b}{3} and \frac{9\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{b+27}{3}}{\left(\frac{b}{3}\right)^{2}+6}
Do the multiplications in b+9\times 3.
\frac{\frac{b+27}{3}}{\frac{b^{2}}{3^{2}}+6}
To raise \frac{b}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b+27}{3}}{\frac{b^{2}}{3^{2}}+\frac{6\times 3^{2}}{3^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{3^{2}}{3^{2}}.
\frac{\frac{b+27}{3}}{\frac{b^{2}+6\times 3^{2}}{3^{2}}}
Since \frac{b^{2}}{3^{2}} and \frac{6\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{b+27}{3}}{\frac{b^{2}+54}{3^{2}}}
Do the multiplications in b^{2}+6\times 3^{2}.
\frac{\left(b+27\right)\times 3^{2}}{3\left(b^{2}+54\right)}
Divide \frac{b+27}{3} by \frac{b^{2}+54}{3^{2}} by multiplying \frac{b+27}{3} by the reciprocal of \frac{b^{2}+54}{3^{2}}.
\frac{3\left(b+27\right)}{b^{2}+54}
Cancel out 3 in both numerator and denominator.
\frac{3b+81}{b^{2}+54}
Use the distributive property to multiply 3 by b+27.
\frac{\frac{b}{3}+\frac{9\times 3}{3}}{\left(\frac{b}{3}\right)^{2}+6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{3}{3}.
\frac{\frac{b+9\times 3}{3}}{\left(\frac{b}{3}\right)^{2}+6}
Since \frac{b}{3} and \frac{9\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{b+27}{3}}{\left(\frac{b}{3}\right)^{2}+6}
Do the multiplications in b+9\times 3.
\frac{\frac{b+27}{3}}{\frac{b^{2}}{3^{2}}+6}
To raise \frac{b}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{b+27}{3}}{\frac{b^{2}}{3^{2}}+\frac{6\times 3^{2}}{3^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{3^{2}}{3^{2}}.
\frac{\frac{b+27}{3}}{\frac{b^{2}+6\times 3^{2}}{3^{2}}}
Since \frac{b^{2}}{3^{2}} and \frac{6\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{b+27}{3}}{\frac{b^{2}+54}{3^{2}}}
Do the multiplications in b^{2}+6\times 3^{2}.
\frac{\left(b+27\right)\times 3^{2}}{3\left(b^{2}+54\right)}
Divide \frac{b+27}{3} by \frac{b^{2}+54}{3^{2}} by multiplying \frac{b+27}{3} by the reciprocal of \frac{b^{2}+54}{3^{2}}.
\frac{3\left(b+27\right)}{b^{2}+54}
Cancel out 3 in both numerator and denominator.
\frac{3b+81}{b^{2}+54}
Use the distributive property to multiply 3 by b+27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}