\frac { a y } { d t } = 0.3 y ( 1 - \frac { y } { 0.06 } )
Solve for a
\left\{\begin{matrix}a=-\frac{dt\left(50y-3\right)}{10}\text{, }&d\neq 0\text{ and }t\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }d\neq 0\text{ and }t\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d\neq 0\text{, }&\text{unconditionally}\\d=-\frac{10a}{t\left(50y-3\right)}\text{, }&a\neq 0\text{ and }y\neq \frac{3}{50}\text{ and }t\neq 0\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { a y } { d t } = 0.3 y ( 1 - \frac { y } { 0.06 } )
Share
Copied to clipboard
ay=0.3y\left(1-\frac{y}{0.06}\right)dt
Multiply both sides of the equation by dt.
ay=\left(0.3y+0.3y\left(-\frac{y}{0.06}\right)\right)dt
Use the distributive property to multiply 0.3y by 1-\frac{y}{0.06}.
ay=\left(0.3yd+0.3y\left(-\frac{y}{0.06}\right)d\right)t
Use the distributive property to multiply 0.3y+0.3y\left(-\frac{y}{0.06}\right) by d.
ay=0.3ydt+0.3y\left(-\frac{y}{0.06}\right)dt
Use the distributive property to multiply 0.3yd+0.3y\left(-\frac{y}{0.06}\right)d by t.
ay=0.3ydt-0.3y\times \frac{y}{0.06}dt
Multiply 0.3 and -1 to get -0.3.
ya=-5dty^{2}+\frac{3dty}{10}
The equation is in standard form.
\frac{ya}{y}=\frac{dty\left(0.3-5y\right)}{y}
Divide both sides by y.
a=\frac{dty\left(0.3-5y\right)}{y}
Dividing by y undoes the multiplication by y.
a=dt\left(0.3-5y\right)
Divide ydt\left(0.3-5y\right) by y.
ay=0.3y\left(1-\frac{y}{0.06}\right)dt
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dt.
ay=\left(0.3y+0.3y\left(-\frac{y}{0.06}\right)\right)dt
Use the distributive property to multiply 0.3y by 1-\frac{y}{0.06}.
ay=\left(0.3yd+0.3y\left(-\frac{y}{0.06}\right)d\right)t
Use the distributive property to multiply 0.3y+0.3y\left(-\frac{y}{0.06}\right) by d.
ay=0.3ydt+0.3y\left(-\frac{y}{0.06}\right)dt
Use the distributive property to multiply 0.3yd+0.3y\left(-\frac{y}{0.06}\right)d by t.
0.3ydt+0.3y\left(-\frac{y}{0.06}\right)dt=ay
Swap sides so that all variable terms are on the left hand side.
0.3ydt-0.3y\times \frac{y}{0.06}dt=ay
Multiply 0.3 and -1 to get -0.3.
\left(0.3yt-0.3y\times \frac{y}{0.06}t\right)d=ay
Combine all terms containing d.
\left(-5ty^{2}+\frac{3ty}{10}\right)d=ay
The equation is in standard form.
\frac{\left(-5ty^{2}+\frac{3ty}{10}\right)d}{-5ty^{2}+\frac{3ty}{10}}=\frac{ay}{-5ty^{2}+\frac{3ty}{10}}
Divide both sides by 0.3yt-5ty^{2}.
d=\frac{ay}{-5ty^{2}+\frac{3ty}{10}}
Dividing by 0.3yt-5ty^{2} undoes the multiplication by 0.3yt-5ty^{2}.
d=\frac{a}{t\left(0.3-5y\right)}
Divide ay by 0.3yt-5ty^{2}.
d=\frac{a}{t\left(0.3-5y\right)}\text{, }d\neq 0
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}