Solve for a (complex solution)
a=\frac{2\left(2x+1\right)}{x-1}
x\neq 0\text{ and }x\neq 1\text{ and }x\neq -1
Solve for x (complex solution)
x=\frac{a+2}{a-4}
a\neq 4\text{ and }a\neq -2\text{ and }a\neq 1
Solve for a
a=\frac{2\left(2x+1\right)}{x-1}
x\neq 0\text{ and }|x|\neq 1
Solve for x
x=\frac{a+2}{a-4}
a\neq 4\text{ and }a\neq 1\text{ and }a\neq -2
Share
Copied to clipboard
ax-4x=a+2
Variable a cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by \left(a-1\right)\left(a+2\right), the least common multiple of a^{2}+a-2,a-1.
ax-4x-a=2
Subtract a from both sides.
ax-a=2+4x
Add 4x to both sides.
\left(x-1\right)a=2+4x
Combine all terms containing a.
\left(x-1\right)a=4x+2
The equation is in standard form.
\frac{\left(x-1\right)a}{x-1}=\frac{4x+2}{x-1}
Divide both sides by -1+x.
a=\frac{4x+2}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
a=\frac{2\left(2x+1\right)}{x-1}
Divide 2+4x by -1+x.
a=\frac{2\left(2x+1\right)}{x-1}\text{, }a\neq -2\text{ and }a\neq 1
Variable a cannot be equal to any of the values -2,1.
ax-4x=a+2
Multiply both sides of the equation by \left(a-1\right)\left(a+2\right), the least common multiple of a^{2}+a-2,a-1.
\left(a-4\right)x=a+2
Combine all terms containing x.
\frac{\left(a-4\right)x}{a-4}=\frac{a+2}{a-4}
Divide both sides by a-4.
x=\frac{a+2}{a-4}
Dividing by a-4 undoes the multiplication by a-4.
ax-4x=a+2
Variable a cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by \left(a-1\right)\left(a+2\right), the least common multiple of a^{2}+a-2,a-1.
ax-4x-a=2
Subtract a from both sides.
ax-a=2+4x
Add 4x to both sides.
\left(x-1\right)a=2+4x
Combine all terms containing a.
\left(x-1\right)a=4x+2
The equation is in standard form.
\frac{\left(x-1\right)a}{x-1}=\frac{4x+2}{x-1}
Divide both sides by -1+x.
a=\frac{4x+2}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
a=\frac{2\left(2x+1\right)}{x-1}
Divide 2+4x by -1+x.
a=\frac{2\left(2x+1\right)}{x-1}\text{, }a\neq -2\text{ and }a\neq 1
Variable a cannot be equal to any of the values -2,1.
ax-4x=a+2
Multiply both sides of the equation by \left(a-1\right)\left(a+2\right), the least common multiple of a^{2}+a-2,a-1.
\left(a-4\right)x=a+2
Combine all terms containing x.
\frac{\left(a-4\right)x}{a-4}=\frac{a+2}{a-4}
Divide both sides by a-4.
x=\frac{a+2}{a-4}
Dividing by a-4 undoes the multiplication by a-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}