Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{2}{a}\text{, }&a\neq 0\text{ and }a\neq -3\text{ and }a\neq 2\\x\in \mathrm{C}\text{, }&a=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{2}{a}\text{, }&a\neq 0\text{ and }a\neq -3\text{ and }a\neq 2\\x\in \mathrm{R}\text{, }&a=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=1\text{, }&\text{unconditionally}\\a=\frac{2}{x}\text{, }&x\neq -\frac{2}{3}\text{ and }x\neq 0\text{ and }x\neq 1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(a-2\right)\left(ax-1\right)-\left(-\left(3+a\right)\left(x-1\right)\right)=3\left(x-1\right)
Multiply both sides of the equation by \left(a-2\right)\left(a+3\right), the least common multiple of a+3,2-a,a^{2}+a-6.
xa^{2}-a-2ax+2-\left(-\left(3+a\right)\left(x-1\right)\right)=3\left(x-1\right)
Use the distributive property to multiply a-2 by ax-1.
xa^{2}-a-2ax+2-\left(-3-a\right)\left(x-1\right)=3\left(x-1\right)
Use the distributive property to multiply -1 by 3+a.
xa^{2}-a-2ax+2-\left(-3x+3-ax+a\right)=3\left(x-1\right)
Use the distributive property to multiply -3-a by x-1.
xa^{2}-a-2ax+2+3x-3+ax-a=3\left(x-1\right)
To find the opposite of -3x+3-ax+a, find the opposite of each term.
xa^{2}-a-2ax-1+3x+ax-a=3\left(x-1\right)
Subtract 3 from 2 to get -1.
xa^{2}-a-ax-1+3x-a=3\left(x-1\right)
Combine -2ax and ax to get -ax.
xa^{2}-2a-ax-1+3x=3\left(x-1\right)
Combine -a and -a to get -2a.
xa^{2}-2a-ax-1+3x=3x-3
Use the distributive property to multiply 3 by x-1.
xa^{2}-2a-ax-1+3x-3x=-3
Subtract 3x from both sides.
xa^{2}-2a-ax-1=-3
Combine 3x and -3x to get 0.
xa^{2}-ax-1=-3+2a
Add 2a to both sides.
xa^{2}-ax=-3+2a+1
Add 1 to both sides.
xa^{2}-ax=-2+2a
Add -3 and 1 to get -2.
\left(a^{2}-a\right)x=-2+2a
Combine all terms containing x.
\left(a^{2}-a\right)x=2a-2
The equation is in standard form.
\frac{\left(a^{2}-a\right)x}{a^{2}-a}=\frac{2a-2}{a^{2}-a}
Divide both sides by a^{2}-a.
x=\frac{2a-2}{a^{2}-a}
Dividing by a^{2}-a undoes the multiplication by a^{2}-a.
x=\frac{2}{a}
Divide -2+2a by a^{2}-a.
\left(a-2\right)\left(ax-1\right)-\left(-\left(3+a\right)\left(x-1\right)\right)=3\left(x-1\right)
Multiply both sides of the equation by \left(a-2\right)\left(a+3\right), the least common multiple of a+3,2-a,a^{2}+a-6.
xa^{2}-a-2ax+2-\left(-\left(3+a\right)\left(x-1\right)\right)=3\left(x-1\right)
Use the distributive property to multiply a-2 by ax-1.
xa^{2}-a-2ax+2-\left(-3-a\right)\left(x-1\right)=3\left(x-1\right)
Use the distributive property to multiply -1 by 3+a.
xa^{2}-a-2ax+2-\left(-3x+3-ax+a\right)=3\left(x-1\right)
Use the distributive property to multiply -3-a by x-1.
xa^{2}-a-2ax+2+3x-3+ax-a=3\left(x-1\right)
To find the opposite of -3x+3-ax+a, find the opposite of each term.
xa^{2}-a-2ax-1+3x+ax-a=3\left(x-1\right)
Subtract 3 from 2 to get -1.
xa^{2}-a-ax-1+3x-a=3\left(x-1\right)
Combine -2ax and ax to get -ax.
xa^{2}-2a-ax-1+3x=3\left(x-1\right)
Combine -a and -a to get -2a.
xa^{2}-2a-ax-1+3x=3x-3
Use the distributive property to multiply 3 by x-1.
xa^{2}-2a-ax-1+3x-3x=-3
Subtract 3x from both sides.
xa^{2}-2a-ax-1=-3
Combine 3x and -3x to get 0.
xa^{2}-ax-1=-3+2a
Add 2a to both sides.
xa^{2}-ax=-3+2a+1
Add 1 to both sides.
xa^{2}-ax=-2+2a
Add -3 and 1 to get -2.
\left(a^{2}-a\right)x=-2+2a
Combine all terms containing x.
\left(a^{2}-a\right)x=2a-2
The equation is in standard form.
\frac{\left(a^{2}-a\right)x}{a^{2}-a}=\frac{2a-2}{a^{2}-a}
Divide both sides by a^{2}-a.
x=\frac{2a-2}{a^{2}-a}
Dividing by a^{2}-a undoes the multiplication by a^{2}-a.
x=\frac{2}{a}
Divide -2+2a by a^{2}-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}