Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-6\right)\left(ax^{2}+ax\right)+bx\left(x^{2}-2x-3\right)=8bx\left(x-3\right)
Multiply both sides of the equation by 2bx\left(x-3\right), the least common multiple of bx,2x-6.
2ax^{3}-4ax^{2}-6ax+bx\left(x^{2}-2x-3\right)=8bx\left(x-3\right)
Use the distributive property to multiply 2x-6 by ax^{2}+ax and combine like terms.
2ax^{3}-4ax^{2}-6ax+bx^{3}-2bx^{2}-3bx=8bx\left(x-3\right)
Use the distributive property to multiply bx by x^{2}-2x-3.
2ax^{3}-4ax^{2}-6ax+bx^{3}-2bx^{2}-3bx=8bx^{2}-24bx
Use the distributive property to multiply 8bx by x-3.
2ax^{3}-4ax^{2}-6ax-2bx^{2}-3bx=8bx^{2}-24bx-bx^{3}
Subtract bx^{3} from both sides.
2ax^{3}-4ax^{2}-6ax-3bx=8bx^{2}-24bx-bx^{3}+2bx^{2}
Add 2bx^{2} to both sides.
2ax^{3}-4ax^{2}-6ax=8bx^{2}-24bx-bx^{3}+2bx^{2}+3bx
Add 3bx to both sides.
2ax^{3}-4ax^{2}-6ax=10bx^{2}-24bx-bx^{3}+3bx
Combine 8bx^{2} and 2bx^{2} to get 10bx^{2}.
2ax^{3}-4ax^{2}-6ax=10bx^{2}-21bx-bx^{3}
Combine -24bx and 3bx to get -21bx.
\left(2x^{3}-4x^{2}-6x\right)a=10bx^{2}-21bx-bx^{3}
Combine all terms containing a.
\left(2x^{3}-4x^{2}-6x\right)a=-bx^{3}+10bx^{2}-21bx
The equation is in standard form.
\frac{\left(2x^{3}-4x^{2}-6x\right)a}{2x^{3}-4x^{2}-6x}=\frac{bx\left(3-x\right)\left(x-7\right)}{2x^{3}-4x^{2}-6x}
Divide both sides by 2x^{3}-4x^{2}-6x.
a=\frac{bx\left(3-x\right)\left(x-7\right)}{2x^{3}-4x^{2}-6x}
Dividing by 2x^{3}-4x^{2}-6x undoes the multiplication by 2x^{3}-4x^{2}-6x.
a=-\frac{b\left(x-7\right)}{2\left(x+1\right)}
Divide xb\left(-7+x\right)\left(3-x\right) by 2x^{3}-4x^{2}-6x.
\left(2x-6\right)\left(ax^{2}+ax\right)+xb\left(x^{2}-2x-3\right)=8bx\left(x-3\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2bx\left(x-3\right), the least common multiple of bx,2x-6.
2ax^{3}-4ax^{2}-6ax+xb\left(x^{2}-2x-3\right)=8bx\left(x-3\right)
Use the distributive property to multiply 2x-6 by ax^{2}+ax and combine like terms.
2ax^{3}-4ax^{2}-6ax+bx^{3}-2bx^{2}-3xb=8bx\left(x-3\right)
Use the distributive property to multiply xb by x^{2}-2x-3.
2ax^{3}-4ax^{2}-6ax+bx^{3}-2bx^{2}-3xb=8bx^{2}-24xb
Use the distributive property to multiply 8bx by x-3.
2ax^{3}-4ax^{2}-6ax+bx^{3}-2bx^{2}-3xb-8bx^{2}=-24xb
Subtract 8bx^{2} from both sides.
2ax^{3}-4ax^{2}-6ax+bx^{3}-10bx^{2}-3xb=-24xb
Combine -2bx^{2} and -8bx^{2} to get -10bx^{2}.
2ax^{3}-4ax^{2}-6ax+bx^{3}-10bx^{2}-3xb+24xb=0
Add 24xb to both sides.
2ax^{3}-4ax^{2}-6ax+bx^{3}-10bx^{2}+21xb=0
Combine -3xb and 24xb to get 21xb.
-4ax^{2}-6ax+bx^{3}-10bx^{2}+21xb=-2ax^{3}
Subtract 2ax^{3} from both sides. Anything subtracted from zero gives its negation.
-6ax+bx^{3}-10bx^{2}+21xb=-2ax^{3}+4ax^{2}
Add 4ax^{2} to both sides.
bx^{3}-10bx^{2}+21xb=-2ax^{3}+4ax^{2}+6ax
Add 6ax to both sides.
\left(x^{3}-10x^{2}+21x\right)b=-2ax^{3}+4ax^{2}+6ax
Combine all terms containing b.
\left(x^{3}-10x^{2}+21x\right)b=6ax+4ax^{2}-2ax^{3}
The equation is in standard form.
\frac{\left(x^{3}-10x^{2}+21x\right)b}{x^{3}-10x^{2}+21x}=-\frac{2ax\left(x-3\right)\left(x+1\right)}{x^{3}-10x^{2}+21x}
Divide both sides by x^{3}-10x^{2}+21x.
b=-\frac{2ax\left(x-3\right)\left(x+1\right)}{x^{3}-10x^{2}+21x}
Dividing by x^{3}-10x^{2}+21x undoes the multiplication by x^{3}-10x^{2}+21x.
b=-\frac{2a\left(x+1\right)}{x-7}
Divide -2ax\left(-3+x\right)\left(1+x\right) by x^{3}-10x^{2}+21x.
b=-\frac{2a\left(x+1\right)}{x-7}\text{, }b\neq 0
Variable b cannot be equal to 0.