Solve for a
a=-\frac{24\left(3+x-x^{2}\right)}{2x^{2}-3x-5}
x\neq -1\text{ and }x\neq \frac{5}{2}\text{ and }x\neq 0\text{ and }x\neq \frac{\sqrt{13}+1}{2}\text{ and }x\neq \frac{1-\sqrt{13}}{2}
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{49a^{2}-1200a+7488}+3a-24}{4\left(a-12\right)}\text{, }&a\neq \frac{72}{5}\text{ and }a\neq 0\text{ and }a\neq 12\\x=\frac{\sqrt{49a^{2}-1200a+7488}+3a-24}{4\left(a-12\right)}\text{, }&a\neq 12\text{ and }a\neq 0\\x=1\text{, }&a=12\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{\left(ax^{2}+ax\right)\left(2x-5\right)}{6x\left(x^{2}-x-3\right)}=4
Divide \frac{ax^{2}+ax}{6x} by \frac{x^{2}-x-3}{2x-5} by multiplying \frac{ax^{2}+ax}{6x} by the reciprocal of \frac{x^{2}-x-3}{2x-5}.
\frac{ax\left(2x-5\right)\left(x+1\right)}{6x\left(x-\left(-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)}=4
Factor the expressions that are not already factored in \frac{\left(ax^{2}+ax\right)\left(2x-5\right)}{6x\left(x^{2}-x-3\right)}.
\frac{a\left(2x-5\right)\left(x+1\right)}{6\left(x-\left(-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)}=4
Cancel out x in both numerator and denominator.
\frac{\left(2ax-5a\right)\left(x+1\right)}{6\left(x-\left(-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)}=4
Use the distributive property to multiply a by 2x-5.
\frac{2ax^{2}-3ax-5a}{6\left(x-\left(-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)}=4
Use the distributive property to multiply 2ax-5a by x+1 and combine like terms.
\frac{2ax^{2}-3ax-5a}{6\left(x+\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)}=4
To find the opposite of -\frac{1}{2}\sqrt{13}+\frac{1}{2}, find the opposite of each term.
\frac{2ax^{2}-3ax-5a}{6\left(x+\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)}=4
To find the opposite of \frac{1}{2}\sqrt{13}+\frac{1}{2}, find the opposite of each term.
\frac{2ax^{2}-3ax-5a}{\left(6x+3\sqrt{13}-3\right)\left(x-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)}=4
Use the distributive property to multiply 6 by x+\frac{1}{2}\sqrt{13}-\frac{1}{2}.
\frac{2ax^{2}-3ax-5a}{6x^{2}-6x-\frac{3}{2}\left(\sqrt{13}\right)^{2}+\frac{3}{2}}=4
Use the distributive property to multiply 6x+3\sqrt{13}-3 by x-\frac{1}{2}\sqrt{13}-\frac{1}{2} and combine like terms.
\frac{2ax^{2}-3ax-5a}{6x^{2}-6x-\frac{3}{2}\times 13+\frac{3}{2}}=4
The square of \sqrt{13} is 13.
\frac{2ax^{2}-3ax-5a}{6x^{2}-6x-\frac{39}{2}+\frac{3}{2}}=4
Multiply -\frac{3}{2} and 13 to get -\frac{39}{2}.
\frac{2ax^{2}-3ax-5a}{6x^{2}-6x-18}=4
Add -\frac{39}{2} and \frac{3}{2} to get -18.
2ax^{2}-3ax-5a=24\left(x-\left(-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)
Multiply both sides of the equation by 6\left(x-\left(-\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right).
2ax^{2}-3ax-5a=24\left(x+\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{13}+\frac{1}{2}\right)\right)
To find the opposite of -\frac{1}{2}\sqrt{13}+\frac{1}{2}, find the opposite of each term.
2ax^{2}-3ax-5a=24\left(x+\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)
To find the opposite of \frac{1}{2}\sqrt{13}+\frac{1}{2}, find the opposite of each term.
2ax^{2}-3ax-5a=\left(24x+12\sqrt{13}-12\right)\left(x-\frac{1}{2}\sqrt{13}-\frac{1}{2}\right)
Use the distributive property to multiply 24 by x+\frac{1}{2}\sqrt{13}-\frac{1}{2}.
2ax^{2}-3ax-5a=24x^{2}-24x-6\left(\sqrt{13}\right)^{2}+6
Use the distributive property to multiply 24x+12\sqrt{13}-12 by x-\frac{1}{2}\sqrt{13}-\frac{1}{2} and combine like terms.
2ax^{2}-3ax-5a=24x^{2}-24x-6\times 13+6
The square of \sqrt{13} is 13.
2ax^{2}-3ax-5a=24x^{2}-24x-78+6
Multiply -6 and 13 to get -78.
2ax^{2}-3ax-5a=24x^{2}-24x-72
Add -78 and 6 to get -72.
\left(2x^{2}-3x-5\right)a=24x^{2}-24x-72
Combine all terms containing a.
\frac{\left(2x^{2}-3x-5\right)a}{2x^{2}-3x-5}=\frac{24x^{2}-24x-72}{2x^{2}-3x-5}
Divide both sides by 2x^{2}-3x-5.
a=\frac{24x^{2}-24x-72}{2x^{2}-3x-5}
Dividing by 2x^{2}-3x-5 undoes the multiplication by 2x^{2}-3x-5.
a=\frac{24\left(x^{2}-x-3\right)}{2x^{2}-3x-5}
Divide 24x^{2}-24x-72 by 2x^{2}-3x-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}