Evaluate
\frac{4}{a+4}
Expand
\frac{4}{a+4}
Share
Copied to clipboard
\frac{\left(ab-4b\right)\times 20}{5b\left(a^{2}-16\right)}
Divide \frac{ab-4b}{5b} by \frac{a^{2}-16}{20} by multiplying \frac{ab-4b}{5b} by the reciprocal of \frac{a^{2}-16}{20}.
\frac{4\left(ab-4b\right)}{b\left(a^{2}-16\right)}
Cancel out 5 in both numerator and denominator.
\frac{4b\left(a-4\right)}{b\left(a-4\right)\left(a+4\right)}
Factor the expressions that are not already factored.
\frac{4}{a+4}
Cancel out b\left(a-4\right) in both numerator and denominator.
\frac{\left(ab-4b\right)\times 20}{5b\left(a^{2}-16\right)}
Divide \frac{ab-4b}{5b} by \frac{a^{2}-16}{20} by multiplying \frac{ab-4b}{5b} by the reciprocal of \frac{a^{2}-16}{20}.
\frac{4\left(ab-4b\right)}{b\left(a^{2}-16\right)}
Cancel out 5 in both numerator and denominator.
\frac{4b\left(a-4\right)}{b\left(a-4\right)\left(a+4\right)}
Factor the expressions that are not already factored.
\frac{4}{a+4}
Cancel out b\left(a-4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}