Solve for b (complex solution)
\left\{\begin{matrix}b=0\text{, }&\left(a\neq 0\text{ and }x=0\right)\text{ or }\left(a\neq x\text{ and }a\neq \frac{1}{x}\text{ and }x\neq 0\right)\\b\in \mathrm{C}\text{, }&\left(a\neq -1\text{ and }x=-1\right)\text{ or }\left(a\neq 1\text{ and }x=1\right)\text{ or }\left(a=0\text{ and }x\neq 0\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=0\text{, }&\left(a\neq 0\text{ and }x=0\right)\text{ or }\left(a\neq x\text{ and }a\neq \frac{1}{x}\text{ and }x\neq 0\right)\\b\in \mathrm{R}\text{, }&\left(a\neq -1\text{ and }x=-1\right)\text{ or }\left(a\neq 1\text{ and }x=1\right)\text{ or }\left(a=0\text{ and }x\neq 0\right)\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=0\text{, }&x\neq 0\\a\in \mathrm{C}\setminus 0\text{, }x=0\text{ or }\left(b\neq 0\text{ and }x\neq -1\text{ and }x\neq 1\right),\frac{1}{x},x\text{, }&\left(x\neq 0\text{ and }b=0\right)\text{ or }x=-1\text{ or }x=1\\a\neq 0\text{, }&b=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=0\text{, }&x\neq 0\\a\in \mathrm{R}\setminus 0\text{, }x=0\text{ or }\left(b\neq 0\text{ and }|x|\neq 1\right),\frac{1}{x},x\text{, }&\left(x\neq 0\text{ and }b=0\right)\text{ or }|x|=1\\a\neq 0\text{, }&b=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(1-ax\right)ab=\left(x-a\right)\left(ax-1\right)b+\left(x-a\right)b
Multiply both sides of the equation by \left(x-a\right)\left(ax-1\right), the least common multiple of a-x,ax-1.
\left(a-xa^{2}\right)b=\left(x-a\right)\left(ax-1\right)b+\left(x-a\right)b
Use the distributive property to multiply 1-ax by a.
ab-xa^{2}b=\left(x-a\right)\left(ax-1\right)b+\left(x-a\right)b
Use the distributive property to multiply a-xa^{2} by b.
ab-xa^{2}b=\left(ax^{2}-x-xa^{2}+a\right)b+\left(x-a\right)b
Use the distributive property to multiply x-a by ax-1.
ab-xa^{2}b=ax^{2}b-xb-xa^{2}b+ab+\left(x-a\right)b
Use the distributive property to multiply ax^{2}-x-xa^{2}+a by b.
ab-xa^{2}b=ax^{2}b-xb-xa^{2}b+ab+xb-ab
Use the distributive property to multiply x-a by b.
ab-xa^{2}b=ax^{2}b-xa^{2}b+ab-ab
Combine -xb and xb to get 0.
ab-xa^{2}b=ax^{2}b-xa^{2}b
Combine ab and -ab to get 0.
ab-xa^{2}b-ax^{2}b=-xa^{2}b
Subtract ax^{2}b from both sides.
ab-xa^{2}b-ax^{2}b+xa^{2}b=0
Add xa^{2}b to both sides.
ab-ax^{2}b=0
Combine -xa^{2}b and xa^{2}b to get 0.
\left(a-ax^{2}\right)b=0
Combine all terms containing b.
b=0
Divide 0 by a-ax^{2}.
\left(1-ax\right)ab=\left(x-a\right)\left(ax-1\right)b+\left(x-a\right)b
Multiply both sides of the equation by \left(x-a\right)\left(ax-1\right), the least common multiple of a-x,ax-1.
\left(a-xa^{2}\right)b=\left(x-a\right)\left(ax-1\right)b+\left(x-a\right)b
Use the distributive property to multiply 1-ax by a.
ab-xa^{2}b=\left(x-a\right)\left(ax-1\right)b+\left(x-a\right)b
Use the distributive property to multiply a-xa^{2} by b.
ab-xa^{2}b=\left(ax^{2}-x-xa^{2}+a\right)b+\left(x-a\right)b
Use the distributive property to multiply x-a by ax-1.
ab-xa^{2}b=ax^{2}b-xb-xa^{2}b+ab+\left(x-a\right)b
Use the distributive property to multiply ax^{2}-x-xa^{2}+a by b.
ab-xa^{2}b=ax^{2}b-xb-xa^{2}b+ab+xb-ab
Use the distributive property to multiply x-a by b.
ab-xa^{2}b=ax^{2}b-xa^{2}b+ab-ab
Combine -xb and xb to get 0.
ab-xa^{2}b=ax^{2}b-xa^{2}b
Combine ab and -ab to get 0.
ab-xa^{2}b-ax^{2}b=-xa^{2}b
Subtract ax^{2}b from both sides.
ab-xa^{2}b-ax^{2}b+xa^{2}b=0
Add xa^{2}b to both sides.
ab-ax^{2}b=0
Combine -xa^{2}b and xa^{2}b to get 0.
\left(a-ax^{2}\right)b=0
Combine all terms containing b.
b=0
Divide 0 by a-ax^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}