Skip to main content
Solve for a_1
Tick mark Image
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

a_{1}\left(1-q^{3}\right)=a_{1}q\left(-q+1\right)+10a_{1}\left(-q+1\right)
Multiply both sides of the equation by -q+1.
a_{1}-a_{1}q^{3}=a_{1}q\left(-q+1\right)+10a_{1}\left(-q+1\right)
Use the distributive property to multiply a_{1} by 1-q^{3}.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q+10a_{1}\left(-q+1\right)
Use the distributive property to multiply a_{1}q by -q+1.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q-10a_{1}q+10a_{1}
Use the distributive property to multiply 10a_{1} by -q+1.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}-9a_{1}q+10a_{1}
Combine a_{1}q and -10a_{1}q to get -9a_{1}q.
a_{1}-a_{1}q^{3}+a_{1}q^{2}=-9a_{1}q+10a_{1}
Add a_{1}q^{2} to both sides.
a_{1}-a_{1}q^{3}+a_{1}q^{2}+9a_{1}q=10a_{1}
Add 9a_{1}q to both sides.
a_{1}-a_{1}q^{3}+a_{1}q^{2}+9a_{1}q-10a_{1}=0
Subtract 10a_{1} from both sides.
-9a_{1}-a_{1}q^{3}+a_{1}q^{2}+9a_{1}q=0
Combine a_{1} and -10a_{1} to get -9a_{1}.
\left(-9-q^{3}+q^{2}+9q\right)a_{1}=0
Combine all terms containing a_{1}.
\left(-q^{3}+q^{2}+9q-9\right)a_{1}=0
The equation is in standard form.
a_{1}=0
Divide 0 by -9-q^{3}+q^{2}+9q.