Solve for a_1
\left\{\begin{matrix}a_{1}=0\text{, }&q\neq 1\\a_{1}\in \mathrm{R}\text{, }&|q|=3\end{matrix}\right.
Solve for q
\left\{\begin{matrix}\\q=-3\text{; }q=3\text{, }&\text{unconditionally}\\q\neq 1\text{, }&a_{1}=0\end{matrix}\right.
Share
Copied to clipboard
a_{1}\left(1-q^{3}\right)=a_{1}q\left(-q+1\right)+10a_{1}\left(-q+1\right)
Multiply both sides of the equation by -q+1.
a_{1}-a_{1}q^{3}=a_{1}q\left(-q+1\right)+10a_{1}\left(-q+1\right)
Use the distributive property to multiply a_{1} by 1-q^{3}.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q+10a_{1}\left(-q+1\right)
Use the distributive property to multiply a_{1}q by -q+1.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q-10a_{1}q+10a_{1}
Use the distributive property to multiply 10a_{1} by -q+1.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}-9a_{1}q+10a_{1}
Combine a_{1}q and -10a_{1}q to get -9a_{1}q.
a_{1}-a_{1}q^{3}+a_{1}q^{2}=-9a_{1}q+10a_{1}
Add a_{1}q^{2} to both sides.
a_{1}-a_{1}q^{3}+a_{1}q^{2}+9a_{1}q=10a_{1}
Add 9a_{1}q to both sides.
a_{1}-a_{1}q^{3}+a_{1}q^{2}+9a_{1}q-10a_{1}=0
Subtract 10a_{1} from both sides.
-9a_{1}-a_{1}q^{3}+a_{1}q^{2}+9a_{1}q=0
Combine a_{1} and -10a_{1} to get -9a_{1}.
\left(-9-q^{3}+q^{2}+9q\right)a_{1}=0
Combine all terms containing a_{1}.
\left(-q^{3}+q^{2}+9q-9\right)a_{1}=0
The equation is in standard form.
a_{1}=0
Divide 0 by -9-q^{3}+q^{2}+9q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}