Solve for a
a=\frac{a_{1}\left(q^{2}+1\right)}{10}
q\neq 1
Solve for a_1
a_{1}=\frac{10a}{q^{2}+1}
q\neq 1
Share
Copied to clipboard
a_{1}\left(1-q^{3}\right)=a_{1}q\left(-q+1\right)+10a\left(-q+1\right)
Multiply both sides of the equation by -q+1.
a_{1}-a_{1}q^{3}=a_{1}q\left(-q+1\right)+10a\left(-q+1\right)
Use the distributive property to multiply a_{1} by 1-q^{3}.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q+10a\left(-q+1\right)
Use the distributive property to multiply a_{1}q by -q+1.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q-10aq+10a
Use the distributive property to multiply 10a by -q+1.
-a_{1}q^{2}+a_{1}q-10aq+10a=a_{1}-a_{1}q^{3}
Swap sides so that all variable terms are on the left hand side.
a_{1}q-10aq+10a=a_{1}-a_{1}q^{3}+a_{1}q^{2}
Add a_{1}q^{2} to both sides.
-10aq+10a=a_{1}-a_{1}q^{3}+a_{1}q^{2}-a_{1}q
Subtract a_{1}q from both sides.
\left(-10q+10\right)a=a_{1}-a_{1}q^{3}+a_{1}q^{2}-a_{1}q
Combine all terms containing a.
\left(10-10q\right)a=a_{1}-a_{1}q+a_{1}q^{2}-a_{1}q^{3}
The equation is in standard form.
\frac{\left(10-10q\right)a}{10-10q}=\frac{a_{1}\left(1-q\right)\left(q^{2}+1\right)}{10-10q}
Divide both sides by -10q+10.
a=\frac{a_{1}\left(1-q\right)\left(q^{2}+1\right)}{10-10q}
Dividing by -10q+10 undoes the multiplication by -10q+10.
a=\frac{a_{1}\left(q^{2}+1\right)}{10}
Divide a_{1}\left(1-q\right)\left(1+q^{2}\right) by -10q+10.
a_{1}\left(1-q^{3}\right)=a_{1}q\left(-q+1\right)+10a\left(-q+1\right)
Multiply both sides of the equation by -q+1.
a_{1}-a_{1}q^{3}=a_{1}q\left(-q+1\right)+10a\left(-q+1\right)
Use the distributive property to multiply a_{1} by 1-q^{3}.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q+10a\left(-q+1\right)
Use the distributive property to multiply a_{1}q by -q+1.
a_{1}-a_{1}q^{3}=-a_{1}q^{2}+a_{1}q-10aq+10a
Use the distributive property to multiply 10a by -q+1.
a_{1}-a_{1}q^{3}+a_{1}q^{2}=a_{1}q-10aq+10a
Add a_{1}q^{2} to both sides.
a_{1}-a_{1}q^{3}+a_{1}q^{2}-a_{1}q=-10aq+10a
Subtract a_{1}q from both sides.
\left(1-q^{3}+q^{2}-q\right)a_{1}=-10aq+10a
Combine all terms containing a_{1}.
\left(1-q+q^{2}-q^{3}\right)a_{1}=10a-10aq
The equation is in standard form.
\frac{\left(1-q+q^{2}-q^{3}\right)a_{1}}{1-q+q^{2}-q^{3}}=\frac{10a\left(1-q\right)}{1-q+q^{2}-q^{3}}
Divide both sides by 1-q^{3}+q^{2}-q.
a_{1}=\frac{10a\left(1-q\right)}{1-q+q^{2}-q^{3}}
Dividing by 1-q^{3}+q^{2}-q undoes the multiplication by 1-q^{3}+q^{2}-q.
a_{1}=\frac{10a}{q^{2}+1}
Divide 10a\left(-q+1\right) by 1-q^{3}+q^{2}-q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}