\frac { a _ { 1 } } { 1,8 } = \frac { 12 } { x }
Solve for a_1
a_{1}=\frac{108}{5x}
x\neq 0
Solve for x
x=\frac{108}{5a_{1}}
a_{1}\neq 0
Graph
Share
Copied to clipboard
\frac{5}{9}a_{1}=\frac{12}{x}
The equation is in standard form.
\frac{\frac{5}{9}a_{1}}{\frac{5}{9}}=\frac{12}{\frac{5}{9}x}
Divide both sides of the equation by \frac{5}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
a_{1}=\frac{12}{\frac{5}{9}x}
Dividing by \frac{5}{9} undoes the multiplication by \frac{5}{9}.
a_{1}=\frac{108}{5x}
Divide \frac{12}{x} by \frac{5}{9} by multiplying \frac{12}{x} by the reciprocal of \frac{5}{9}.
x\times \frac{a_{1}}{1,8}=12
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{5a_{1}}{9}x=12
The equation is in standard form.
\frac{9\times \frac{5a_{1}}{9}x}{5a_{1}}=\frac{9\times 12}{5a_{1}}
Divide both sides by \frac{5}{9}a_{1}.
x=\frac{9\times 12}{5a_{1}}
Dividing by \frac{5}{9}a_{1} undoes the multiplication by \frac{5}{9}a_{1}.
x=\frac{108}{5a_{1}}
Divide 12 by \frac{5}{9}a_{1}.
x=\frac{108}{5a_{1}}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}