Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Subtract ax^{2}\left(\cos(x)\right)^{2} from both sides.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Add y to both sides. Anything plus zero gives itself.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Combine all terms containing a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
The equation is in standard form.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Divide both sides by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Dividing by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} undoes the multiplication by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Divide y by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Variable a cannot be equal to 0.
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Subtract ax^{2}\left(\cos(x)\right)^{2} from both sides.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Add y to both sides. Anything plus zero gives itself.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Combine all terms containing a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
The equation is in standard form.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Divide both sides by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Dividing by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} undoes the multiplication by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Divide y by 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Variable a cannot be equal to 0.