Solve for a
\left\{\begin{matrix}a=\frac{r}{1-n}\text{, }&r\neq 0\text{ and }n\neq 1\\a\neq 0\text{, }&r=0\text{ and }n=1\end{matrix}\right.
Solve for n
n=\frac{a-r}{a}
a\neq 0
Share
Copied to clipboard
a-r=an
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
a-r-an=0
Subtract an from both sides.
a-an=r
Add r to both sides. Anything plus zero gives itself.
\left(1-n\right)a=r
Combine all terms containing a.
\frac{\left(1-n\right)a}{1-n}=\frac{r}{1-n}
Divide both sides by 1-n.
a=\frac{r}{1-n}
Dividing by 1-n undoes the multiplication by 1-n.
a=\frac{r}{1-n}\text{, }a\neq 0
Variable a cannot be equal to 0.
a-r=an
Multiply both sides of the equation by a.
an=a-r
Swap sides so that all variable terms are on the left hand side.
\frac{an}{a}=\frac{a-r}{a}
Divide both sides by a.
n=\frac{a-r}{a}
Dividing by a undoes the multiplication by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}