Evaluate
\frac{\left(b-a\right)\left(-a+b-1\right)}{a}
Expand
\frac{a^{2}-2ab+a+b^{2}-b}{a}
Share
Copied to clipboard
\frac{a-b}{a}+\frac{aa}{a}-\frac{2ab-b^{2}}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{a-b+aa}{a}-\frac{2ab-b^{2}}{a}
Since \frac{a-b}{a} and \frac{aa}{a} have the same denominator, add them by adding their numerators.
\frac{a-b+a^{2}}{a}-\frac{2ab-b^{2}}{a}
Do the multiplications in a-b+aa.
\frac{a-b+a^{2}-\left(2ab-b^{2}\right)}{a}
Since \frac{a-b+a^{2}}{a} and \frac{2ab-b^{2}}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a-b+a^{2}-2ab+b^{2}}{a}
Do the multiplications in a-b+a^{2}-\left(2ab-b^{2}\right).
\frac{a-b}{a}+\frac{aa}{a}-\frac{2ab-b^{2}}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{a-b+aa}{a}-\frac{2ab-b^{2}}{a}
Since \frac{a-b}{a} and \frac{aa}{a} have the same denominator, add them by adding their numerators.
\frac{a-b+a^{2}}{a}-\frac{2ab-b^{2}}{a}
Do the multiplications in a-b+aa.
\frac{a-b+a^{2}-\left(2ab-b^{2}\right)}{a}
Since \frac{a-b+a^{2}}{a} and \frac{2ab-b^{2}}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a-b+a^{2}-2ab+b^{2}}{a}
Do the multiplications in a-b+a^{2}-\left(2ab-b^{2}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}