Evaluate
\frac{a\left(a^{2}-b\right)}{a+b}
Expand
\frac{a^{3}-ab}{a+b}
Share
Copied to clipboard
\frac{a-b}{a+b}\times \frac{a^{2}\left(a^{2}-b\right)}{a\left(a-b\right)}
Factor the expressions that are not already factored in \frac{a^{4}-a^{2}b}{a^{2}-ab}.
\frac{a-b}{a+b}\times \frac{a\left(a^{2}-b\right)}{a-b}
Cancel out a in both numerator and denominator.
\frac{\left(a-b\right)a\left(a^{2}-b\right)}{\left(a+b\right)\left(a-b\right)}
Multiply \frac{a-b}{a+b} times \frac{a\left(a^{2}-b\right)}{a-b} by multiplying numerator times numerator and denominator times denominator.
\frac{a\left(a^{2}-b\right)}{a+b}
Cancel out a-b in both numerator and denominator.
\frac{a^{3}-ab}{a+b}
Use the distributive property to multiply a by a^{2}-b.
\frac{a-b}{a+b}\times \frac{a^{2}\left(a^{2}-b\right)}{a\left(a-b\right)}
Factor the expressions that are not already factored in \frac{a^{4}-a^{2}b}{a^{2}-ab}.
\frac{a-b}{a+b}\times \frac{a\left(a^{2}-b\right)}{a-b}
Cancel out a in both numerator and denominator.
\frac{\left(a-b\right)a\left(a^{2}-b\right)}{\left(a+b\right)\left(a-b\right)}
Multiply \frac{a-b}{a+b} times \frac{a\left(a^{2}-b\right)}{a-b} by multiplying numerator times numerator and denominator times denominator.
\frac{a\left(a^{2}-b\right)}{a+b}
Cancel out a-b in both numerator and denominator.
\frac{a^{3}-ab}{a+b}
Use the distributive property to multiply a by a^{2}-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}