Solve for a
a>20
Share
Copied to clipboard
3\left(a-8\right)>2\left(a-12+10\right)
Multiply both sides of the equation by 12, the least common multiple of 4,6. Since 12 is positive, the inequality direction remains the same.
3a-24>2\left(a-12+10\right)
Use the distributive property to multiply 3 by a-8.
3a-24>2\left(a-2\right)
Add -12 and 10 to get -2.
3a-24>2a-4
Use the distributive property to multiply 2 by a-2.
3a-24-2a>-4
Subtract 2a from both sides.
a-24>-4
Combine 3a and -2a to get a.
a>-4+24
Add 24 to both sides.
a>20
Add -4 and 24 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}