Solve for a
a=-8
Share
Copied to clipboard
a-6+\left(a-2\right)\left(a+1\right)=a^{2}-2a-24
Variable a cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(a-2\right)\left(a+2\right), the least common multiple of a^{2}-4,a+2.
a-6+a^{2}-a-2=a^{2}-2a-24
Use the distributive property to multiply a-2 by a+1 and combine like terms.
-6+a^{2}-2=a^{2}-2a-24
Combine a and -a to get 0.
-8+a^{2}=a^{2}-2a-24
Subtract 2 from -6 to get -8.
-8+a^{2}-a^{2}=-2a-24
Subtract a^{2} from both sides.
-8=-2a-24
Combine a^{2} and -a^{2} to get 0.
-2a-24=-8
Swap sides so that all variable terms are on the left hand side.
-2a=-8+24
Add 24 to both sides.
-2a=16
Add -8 and 24 to get 16.
a=\frac{16}{-2}
Divide both sides by -2.
a=-8
Divide 16 by -2 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}