Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a-6}{4a\left(a+1\right)}+\frac{3a-7}{2a\left(a-1\right)}-\frac{a-7}{a^{2}-1}
Factor 4a^{2}+4a. Factor 2a^{2}-2a.
\frac{\left(a-6\right)\left(a-1\right)}{4a\left(a-1\right)\left(a+1\right)}+\frac{\left(3a-7\right)\times 2\left(a+1\right)}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(a+1\right) and 2a\left(a-1\right) is 4a\left(a-1\right)\left(a+1\right). Multiply \frac{a-6}{4a\left(a+1\right)} times \frac{a-1}{a-1}. Multiply \frac{3a-7}{2a\left(a-1\right)} times \frac{2\left(a+1\right)}{2\left(a+1\right)}.
\frac{\left(a-6\right)\left(a-1\right)+\left(3a-7\right)\times 2\left(a+1\right)}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
Since \frac{\left(a-6\right)\left(a-1\right)}{4a\left(a-1\right)\left(a+1\right)} and \frac{\left(3a-7\right)\times 2\left(a+1\right)}{4a\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-a-6a+6+6a^{2}+6a-14a-14}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
Do the multiplications in \left(a-6\right)\left(a-1\right)+\left(3a-7\right)\times 2\left(a+1\right).
\frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
Combine like terms in a^{2}-a-6a+6+6a^{2}+6a-14a-14.
\frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-7\right)\times 4a}{4a\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(a-1\right)\left(a+1\right) and \left(a-1\right)\left(a+1\right) is 4a\left(a-1\right)\left(a+1\right). Multiply \frac{a-7}{\left(a-1\right)\left(a+1\right)} times \frac{4a}{4a}.
\frac{7a^{2}-15a-8-\left(a-7\right)\times 4a}{4a\left(a-1\right)\left(a+1\right)}
Since \frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)} and \frac{\left(a-7\right)\times 4a}{4a\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7a^{2}-15a-8-4a^{2}+28a}{4a\left(a-1\right)\left(a+1\right)}
Do the multiplications in 7a^{2}-15a-8-\left(a-7\right)\times 4a.
\frac{3a^{2}+13a-8}{4a\left(a-1\right)\left(a+1\right)}
Combine like terms in 7a^{2}-15a-8-4a^{2}+28a.
\frac{3a^{2}+13a-8}{4a^{3}-4a}
Expand 4a\left(a-1\right)\left(a+1\right).
\frac{a-6}{4a\left(a+1\right)}+\frac{3a-7}{2a\left(a-1\right)}-\frac{a-7}{a^{2}-1}
Factor 4a^{2}+4a. Factor 2a^{2}-2a.
\frac{\left(a-6\right)\left(a-1\right)}{4a\left(a-1\right)\left(a+1\right)}+\frac{\left(3a-7\right)\times 2\left(a+1\right)}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(a+1\right) and 2a\left(a-1\right) is 4a\left(a-1\right)\left(a+1\right). Multiply \frac{a-6}{4a\left(a+1\right)} times \frac{a-1}{a-1}. Multiply \frac{3a-7}{2a\left(a-1\right)} times \frac{2\left(a+1\right)}{2\left(a+1\right)}.
\frac{\left(a-6\right)\left(a-1\right)+\left(3a-7\right)\times 2\left(a+1\right)}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
Since \frac{\left(a-6\right)\left(a-1\right)}{4a\left(a-1\right)\left(a+1\right)} and \frac{\left(3a-7\right)\times 2\left(a+1\right)}{4a\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-a-6a+6+6a^{2}+6a-14a-14}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
Do the multiplications in \left(a-6\right)\left(a-1\right)+\left(3a-7\right)\times 2\left(a+1\right).
\frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{a^{2}-1}
Combine like terms in a^{2}-a-6a+6+6a^{2}+6a-14a-14.
\frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)}-\frac{a-7}{\left(a-1\right)\left(a+1\right)}
Factor a^{2}-1.
\frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-7\right)\times 4a}{4a\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(a-1\right)\left(a+1\right) and \left(a-1\right)\left(a+1\right) is 4a\left(a-1\right)\left(a+1\right). Multiply \frac{a-7}{\left(a-1\right)\left(a+1\right)} times \frac{4a}{4a}.
\frac{7a^{2}-15a-8-\left(a-7\right)\times 4a}{4a\left(a-1\right)\left(a+1\right)}
Since \frac{7a^{2}-15a-8}{4a\left(a-1\right)\left(a+1\right)} and \frac{\left(a-7\right)\times 4a}{4a\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7a^{2}-15a-8-4a^{2}+28a}{4a\left(a-1\right)\left(a+1\right)}
Do the multiplications in 7a^{2}-15a-8-\left(a-7\right)\times 4a.
\frac{3a^{2}+13a-8}{4a\left(a-1\right)\left(a+1\right)}
Combine like terms in 7a^{2}-15a-8-4a^{2}+28a.
\frac{3a^{2}+13a-8}{4a^{3}-4a}
Expand 4a\left(a-1\right)\left(a+1\right).