Solve for a
a = -\frac{25}{3} = -8\frac{1}{3} \approx -8.333333333
Share
Copied to clipboard
a-5=4\left(a+5\right)
Variable a cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by a+5.
a-5=4a+20
Use the distributive property to multiply 4 by a+5.
a-5-4a=20
Subtract 4a from both sides.
-3a-5=20
Combine a and -4a to get -3a.
-3a=20+5
Add 5 to both sides.
-3a=25
Add 20 and 5 to get 25.
a=\frac{25}{-3}
Divide both sides by -3.
a=-\frac{25}{3}
Fraction \frac{25}{-3} can be rewritten as -\frac{25}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}