Evaluate
\frac{a+3}{a+5}
Expand
\frac{a+3}{a+5}
Share
Copied to clipboard
\frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and a+5 is \left(a-5\right)\left(a+5\right). Multiply \frac{a-4}{a-5} times \frac{a+5}{a+5}. Multiply \frac{3}{a+5} times \frac{a-5}{a-5}.
\frac{\left(a-4\right)\left(a+5\right)-3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Since \frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)} and \frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5a-4a-20-3a+15}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Do the multiplications in \left(a-4\right)\left(a+5\right)-3\left(a-5\right).
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Combine like terms in a^{2}+5a-4a-20-3a+15.
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{\left(a-5\right)\left(a+5\right)}
Factor a^{2}-25.
\frac{a^{2}-2a-5-10}{\left(a-5\right)\left(a+5\right)}
Since \frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)} and \frac{10}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}
Combine like terms in a^{2}-2a-5-10.
\frac{\left(a-5\right)\left(a+3\right)}{\left(a-5\right)\left(a+5\right)}
Factor the expressions that are not already factored in \frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}.
\frac{a+3}{a+5}
Cancel out a-5 in both numerator and denominator.
\frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and a+5 is \left(a-5\right)\left(a+5\right). Multiply \frac{a-4}{a-5} times \frac{a+5}{a+5}. Multiply \frac{3}{a+5} times \frac{a-5}{a-5}.
\frac{\left(a-4\right)\left(a+5\right)-3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Since \frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)} and \frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5a-4a-20-3a+15}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Do the multiplications in \left(a-4\right)\left(a+5\right)-3\left(a-5\right).
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Combine like terms in a^{2}+5a-4a-20-3a+15.
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{\left(a-5\right)\left(a+5\right)}
Factor a^{2}-25.
\frac{a^{2}-2a-5-10}{\left(a-5\right)\left(a+5\right)}
Since \frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)} and \frac{10}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}
Combine like terms in a^{2}-2a-5-10.
\frac{\left(a-5\right)\left(a+3\right)}{\left(a-5\right)\left(a+5\right)}
Factor the expressions that are not already factored in \frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}.
\frac{a+3}{a+5}
Cancel out a-5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}