Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and a+5 is \left(a-5\right)\left(a+5\right). Multiply \frac{a-4}{a-5} times \frac{a+5}{a+5}. Multiply \frac{3}{a+5} times \frac{a-5}{a-5}.
\frac{\left(a-4\right)\left(a+5\right)-3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Since \frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)} and \frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5a-4a-20-3a+15}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Do the multiplications in \left(a-4\right)\left(a+5\right)-3\left(a-5\right).
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Combine like terms in a^{2}+5a-4a-20-3a+15.
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{\left(a-5\right)\left(a+5\right)}
Factor a^{2}-25.
\frac{a^{2}-2a-5-10}{\left(a-5\right)\left(a+5\right)}
Since \frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)} and \frac{10}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}
Combine like terms in a^{2}-2a-5-10.
\frac{\left(a-5\right)\left(a+3\right)}{\left(a-5\right)\left(a+5\right)}
Factor the expressions that are not already factored in \frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}.
\frac{a+3}{a+5}
Cancel out a-5 in both numerator and denominator.
\frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and a+5 is \left(a-5\right)\left(a+5\right). Multiply \frac{a-4}{a-5} times \frac{a+5}{a+5}. Multiply \frac{3}{a+5} times \frac{a-5}{a-5}.
\frac{\left(a-4\right)\left(a+5\right)-3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Since \frac{\left(a-4\right)\left(a+5\right)}{\left(a-5\right)\left(a+5\right)} and \frac{3\left(a-5\right)}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5a-4a-20-3a+15}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Do the multiplications in \left(a-4\right)\left(a+5\right)-3\left(a-5\right).
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{a^{2}-25}
Combine like terms in a^{2}+5a-4a-20-3a+15.
\frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)}-\frac{10}{\left(a-5\right)\left(a+5\right)}
Factor a^{2}-25.
\frac{a^{2}-2a-5-10}{\left(a-5\right)\left(a+5\right)}
Since \frac{a^{2}-2a-5}{\left(a-5\right)\left(a+5\right)} and \frac{10}{\left(a-5\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}
Combine like terms in a^{2}-2a-5-10.
\frac{\left(a-5\right)\left(a+3\right)}{\left(a-5\right)\left(a+5\right)}
Factor the expressions that are not already factored in \frac{a^{2}-2a-15}{\left(a-5\right)\left(a+5\right)}.
\frac{a+3}{a+5}
Cancel out a-5 in both numerator and denominator.