Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a-32}{\left(a-4\right)\left(a+3\right)}-\frac{16}{a\left(a+3\right)}+\frac{16}{a^{2}-4a}
Factor a^{2}-a-12. Factor a^{2}+3a.
\frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)}-\frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-4\right)\left(a+3\right) and a\left(a+3\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{a-32}{\left(a-4\right)\left(a+3\right)} times \frac{a}{a}. Multiply \frac{16}{a\left(a+3\right)} times \frac{a-4}{a-4}.
\frac{\left(a-32\right)a-16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Since \frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-32a-16a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Do the multiplications in \left(a-32\right)a-16\left(a-4\right).
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Combine like terms in a^{2}-32a-16a+64.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a\left(a-4\right)}
Factor a^{2}-4a.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-4\right)\left(a+3\right) and a\left(a-4\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{16}{a\left(a-4\right)} times \frac{a+3}{a+3}.
\frac{a^{2}-48a+64+16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
Since \frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-48a+64+16a+48}{a\left(a-4\right)\left(a+3\right)}
Do the multiplications in a^{2}-48a+64+16\left(a+3\right).
\frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}
Combine like terms in a^{2}-48a+64+16a+48.
\frac{\left(a-28\right)\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}.
\frac{a-28}{a\left(a+3\right)}
Cancel out a-4 in both numerator and denominator.
\frac{a-28}{a^{2}+3a}
Expand a\left(a+3\right).
\frac{a-32}{\left(a-4\right)\left(a+3\right)}-\frac{16}{a\left(a+3\right)}+\frac{16}{a^{2}-4a}
Factor a^{2}-a-12. Factor a^{2}+3a.
\frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)}-\frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-4\right)\left(a+3\right) and a\left(a+3\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{a-32}{\left(a-4\right)\left(a+3\right)} times \frac{a}{a}. Multiply \frac{16}{a\left(a+3\right)} times \frac{a-4}{a-4}.
\frac{\left(a-32\right)a-16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Since \frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-32a-16a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Do the multiplications in \left(a-32\right)a-16\left(a-4\right).
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Combine like terms in a^{2}-32a-16a+64.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a\left(a-4\right)}
Factor a^{2}-4a.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-4\right)\left(a+3\right) and a\left(a-4\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{16}{a\left(a-4\right)} times \frac{a+3}{a+3}.
\frac{a^{2}-48a+64+16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
Since \frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-48a+64+16a+48}{a\left(a-4\right)\left(a+3\right)}
Do the multiplications in a^{2}-48a+64+16\left(a+3\right).
\frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}
Combine like terms in a^{2}-48a+64+16a+48.
\frac{\left(a-28\right)\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}.
\frac{a-28}{a\left(a+3\right)}
Cancel out a-4 in both numerator and denominator.
\frac{a-28}{a^{2}+3a}
Expand a\left(a+3\right).