Evaluate
\frac{a-28}{a\left(a+3\right)}
Expand
\frac{a-28}{a\left(a+3\right)}
Share
Copied to clipboard
\frac{a-32}{\left(a-4\right)\left(a+3\right)}-\frac{16}{a\left(a+3\right)}+\frac{16}{a^{2}-4a}
Factor a^{2}-a-12. Factor a^{2}+3a.
\frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)}-\frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-4\right)\left(a+3\right) and a\left(a+3\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{a-32}{\left(a-4\right)\left(a+3\right)} times \frac{a}{a}. Multiply \frac{16}{a\left(a+3\right)} times \frac{a-4}{a-4}.
\frac{\left(a-32\right)a-16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Since \frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-32a-16a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Do the multiplications in \left(a-32\right)a-16\left(a-4\right).
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Combine like terms in a^{2}-32a-16a+64.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a\left(a-4\right)}
Factor a^{2}-4a.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-4\right)\left(a+3\right) and a\left(a-4\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{16}{a\left(a-4\right)} times \frac{a+3}{a+3}.
\frac{a^{2}-48a+64+16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
Since \frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-48a+64+16a+48}{a\left(a-4\right)\left(a+3\right)}
Do the multiplications in a^{2}-48a+64+16\left(a+3\right).
\frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}
Combine like terms in a^{2}-48a+64+16a+48.
\frac{\left(a-28\right)\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}.
\frac{a-28}{a\left(a+3\right)}
Cancel out a-4 in both numerator and denominator.
\frac{a-28}{a^{2}+3a}
Expand a\left(a+3\right).
\frac{a-32}{\left(a-4\right)\left(a+3\right)}-\frac{16}{a\left(a+3\right)}+\frac{16}{a^{2}-4a}
Factor a^{2}-a-12. Factor a^{2}+3a.
\frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)}-\frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-4\right)\left(a+3\right) and a\left(a+3\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{a-32}{\left(a-4\right)\left(a+3\right)} times \frac{a}{a}. Multiply \frac{16}{a\left(a+3\right)} times \frac{a-4}{a-4}.
\frac{\left(a-32\right)a-16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Since \frac{\left(a-32\right)a}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-32a-16a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Do the multiplications in \left(a-32\right)a-16\left(a-4\right).
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a^{2}-4a}
Combine like terms in a^{2}-32a-16a+64.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16}{a\left(a-4\right)}
Factor a^{2}-4a.
\frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)}+\frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-4\right)\left(a+3\right) and a\left(a-4\right) is a\left(a-4\right)\left(a+3\right). Multiply \frac{16}{a\left(a-4\right)} times \frac{a+3}{a+3}.
\frac{a^{2}-48a+64+16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)}
Since \frac{a^{2}-48a+64}{a\left(a-4\right)\left(a+3\right)} and \frac{16\left(a+3\right)}{a\left(a-4\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-48a+64+16a+48}{a\left(a-4\right)\left(a+3\right)}
Do the multiplications in a^{2}-48a+64+16\left(a+3\right).
\frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}
Combine like terms in a^{2}-48a+64+16a+48.
\frac{\left(a-28\right)\left(a-4\right)}{a\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{a^{2}-32a+112}{a\left(a-4\right)\left(a+3\right)}.
\frac{a-28}{a\left(a+3\right)}
Cancel out a-4 in both numerator and denominator.
\frac{a-28}{a^{2}+3a}
Expand a\left(a+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}