Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(a-3b\right)\left(a+b\right)}{a+b}-\frac{5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-3b times \frac{a+b}{a+b}.
\frac{\frac{\left(a-3b\right)\left(a+b\right)-5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
Since \frac{\left(a-3b\right)\left(a+b\right)}{a+b} and \frac{5b^{3}}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+ab-3ba-3b^{2}-5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
Do the multiplications in \left(a-3b\right)\left(a+b\right)-5b^{3}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
Combine like terms in a^{2}+ab-3ba-3b^{2}-5b^{3}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{\left(a-2b\right)\left(a+b\right)}{a+b}-\frac{4b^{2}}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2b times \frac{a+b}{a+b}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{\left(a-2b\right)\left(a+b\right)-4b^{2}}{a+b}}
Since \frac{\left(a-2b\right)\left(a+b\right)}{a+b} and \frac{4b^{2}}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{a^{2}+ab-2ba-2b^{2}-4b^{2}}{a+b}}
Do the multiplications in \left(a-2b\right)\left(a+b\right)-4b^{2}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{a^{2}-6b^{2}-ab}{a+b}}
Combine like terms in a^{2}+ab-2ba-2b^{2}-4b^{2}.
\frac{\left(a^{2}-3b^{2}-2ab-5b^{3}\right)\left(a+b\right)}{\left(a+b\right)\left(a^{2}-6b^{2}-ab\right)}
Divide \frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b} by \frac{a^{2}-6b^{2}-ab}{a+b} by multiplying \frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b} by the reciprocal of \frac{a^{2}-6b^{2}-ab}{a+b}.
\frac{a^{2}-2ab-5b^{3}-3b^{2}}{a^{2}-ab-6b^{2}}
Cancel out a+b in both numerator and denominator.
\frac{\frac{\left(a-3b\right)\left(a+b\right)}{a+b}-\frac{5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-3b times \frac{a+b}{a+b}.
\frac{\frac{\left(a-3b\right)\left(a+b\right)-5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
Since \frac{\left(a-3b\right)\left(a+b\right)}{a+b} and \frac{5b^{3}}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+ab-3ba-3b^{2}-5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
Do the multiplications in \left(a-3b\right)\left(a+b\right)-5b^{3}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{a-2b-\frac{4b^{2}}{a+b}}
Combine like terms in a^{2}+ab-3ba-3b^{2}-5b^{3}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{\left(a-2b\right)\left(a+b\right)}{a+b}-\frac{4b^{2}}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2b times \frac{a+b}{a+b}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{\left(a-2b\right)\left(a+b\right)-4b^{2}}{a+b}}
Since \frac{\left(a-2b\right)\left(a+b\right)}{a+b} and \frac{4b^{2}}{a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{a^{2}+ab-2ba-2b^{2}-4b^{2}}{a+b}}
Do the multiplications in \left(a-2b\right)\left(a+b\right)-4b^{2}.
\frac{\frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b}}{\frac{a^{2}-6b^{2}-ab}{a+b}}
Combine like terms in a^{2}+ab-2ba-2b^{2}-4b^{2}.
\frac{\left(a^{2}-3b^{2}-2ab-5b^{3}\right)\left(a+b\right)}{\left(a+b\right)\left(a^{2}-6b^{2}-ab\right)}
Divide \frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b} by \frac{a^{2}-6b^{2}-ab}{a+b} by multiplying \frac{a^{2}-3b^{2}-2ab-5b^{3}}{a+b} by the reciprocal of \frac{a^{2}-6b^{2}-ab}{a+b}.
\frac{a^{2}-2ab-5b^{3}-3b^{2}}{a^{2}-ab-6b^{2}}
Cancel out a+b in both numerator and denominator.