Solve for a
a=\frac{2\left(x+11\right)}{x+12}
x\neq -12
Solve for x
x=-\frac{2\left(11-6a\right)}{2-a}
a\neq 2
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { a - 3 } { a - 2 } - \frac { x + 4 } { 2 \cdot 1 } = 5
Share
Copied to clipboard
a-3-\left(\frac{1}{2}a-1\right)\left(x+4\right)=5\left(a-2\right)
Variable a cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by a-2.
a-3-\left(\frac{1}{2}ax+2a-x-4\right)=5\left(a-2\right)
Use the distributive property to multiply \frac{1}{2}a-1 by x+4.
a-3-\frac{1}{2}ax-2a+x+4=5\left(a-2\right)
To find the opposite of \frac{1}{2}ax+2a-x-4, find the opposite of each term.
-a-3-\frac{1}{2}ax+x+4=5\left(a-2\right)
Combine a and -2a to get -a.
-a+1-\frac{1}{2}ax+x=5\left(a-2\right)
Add -3 and 4 to get 1.
-a+1-\frac{1}{2}ax+x=5a-10
Use the distributive property to multiply 5 by a-2.
-a+1-\frac{1}{2}ax+x-5a=-10
Subtract 5a from both sides.
-6a+1-\frac{1}{2}ax+x=-10
Combine -a and -5a to get -6a.
-6a-\frac{1}{2}ax+x=-10-1
Subtract 1 from both sides.
-6a-\frac{1}{2}ax+x=-11
Subtract 1 from -10 to get -11.
-6a-\frac{1}{2}ax=-11-x
Subtract x from both sides.
\left(-6-\frac{1}{2}x\right)a=-11-x
Combine all terms containing a.
\left(-\frac{x}{2}-6\right)a=-x-11
The equation is in standard form.
\frac{\left(-\frac{x}{2}-6\right)a}{-\frac{x}{2}-6}=\frac{-x-11}{-\frac{x}{2}-6}
Divide both sides by -6-\frac{1}{2}x.
a=\frac{-x-11}{-\frac{x}{2}-6}
Dividing by -6-\frac{1}{2}x undoes the multiplication by -6-\frac{1}{2}x.
a=\frac{2\left(x+11\right)}{x+12}
Divide -11-x by -6-\frac{1}{2}x.
a=\frac{2\left(x+11\right)}{x+12}\text{, }a\neq 2
Variable a cannot be equal to 2.
a-3-\left(\frac{1}{2}a-1\right)\left(x+4\right)=5\left(a-2\right)
Multiply both sides of the equation by a-2.
a-3-\left(\frac{1}{2}ax+2a-x-4\right)=5\left(a-2\right)
Use the distributive property to multiply \frac{1}{2}a-1 by x+4.
a-3-\frac{1}{2}ax-2a+x+4=5\left(a-2\right)
To find the opposite of \frac{1}{2}ax+2a-x-4, find the opposite of each term.
-a-3-\frac{1}{2}ax+x+4=5\left(a-2\right)
Combine a and -2a to get -a.
-a+1-\frac{1}{2}ax+x=5\left(a-2\right)
Add -3 and 4 to get 1.
-a+1-\frac{1}{2}ax+x=5a-10
Use the distributive property to multiply 5 by a-2.
1-\frac{1}{2}ax+x=5a-10+a
Add a to both sides.
1-\frac{1}{2}ax+x=6a-10
Combine 5a and a to get 6a.
-\frac{1}{2}ax+x=6a-10-1
Subtract 1 from both sides.
-\frac{1}{2}ax+x=6a-11
Subtract 1 from -10 to get -11.
\left(-\frac{1}{2}a+1\right)x=6a-11
Combine all terms containing x.
\left(-\frac{a}{2}+1\right)x=6a-11
The equation is in standard form.
\frac{\left(-\frac{a}{2}+1\right)x}{-\frac{a}{2}+1}=\frac{6a-11}{-\frac{a}{2}+1}
Divide both sides by -\frac{1}{2}a+1.
x=\frac{6a-11}{-\frac{a}{2}+1}
Dividing by -\frac{1}{2}a+1 undoes the multiplication by -\frac{1}{2}a+1.
x=\frac{2\left(6a-11\right)}{2-a}
Divide 6a-11 by -\frac{1}{2}a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}