Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-3\right)\left(a^{2}+2a+1\right)}{\left(a^{2}-1\right)\left(3a+3\right)}+\frac{1}{a-1}
Divide \frac{a-3}{a^{2}-1} by \frac{3a+3}{a^{2}+2a+1} by multiplying \frac{a-3}{a^{2}-1} by the reciprocal of \frac{3a+3}{a^{2}+2a+1}.
\frac{\left(a-3\right)\left(a+1\right)^{2}}{3\left(a-1\right)\left(a+1\right)^{2}}+\frac{1}{a-1}
Factor the expressions that are not already factored in \frac{\left(a-3\right)\left(a^{2}+2a+1\right)}{\left(a^{2}-1\right)\left(3a+3\right)}.
\frac{a-3}{3\left(a-1\right)}+\frac{1}{a-1}
Cancel out \left(a+1\right)^{2} in both numerator and denominator.
\frac{a-3}{3\left(a-1\right)}+\frac{3}{3\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-1\right) and a-1 is 3\left(a-1\right). Multiply \frac{1}{a-1} times \frac{3}{3}.
\frac{a-3+3}{3\left(a-1\right)}
Since \frac{a-3}{3\left(a-1\right)} and \frac{3}{3\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{a}{3\left(a-1\right)}
Combine like terms in a-3+3.
\frac{a}{3a-3}
Expand 3\left(a-1\right).
\frac{\left(a-3\right)\left(a^{2}+2a+1\right)}{\left(a^{2}-1\right)\left(3a+3\right)}+\frac{1}{a-1}
Divide \frac{a-3}{a^{2}-1} by \frac{3a+3}{a^{2}+2a+1} by multiplying \frac{a-3}{a^{2}-1} by the reciprocal of \frac{3a+3}{a^{2}+2a+1}.
\frac{\left(a-3\right)\left(a+1\right)^{2}}{3\left(a-1\right)\left(a+1\right)^{2}}+\frac{1}{a-1}
Factor the expressions that are not already factored in \frac{\left(a-3\right)\left(a^{2}+2a+1\right)}{\left(a^{2}-1\right)\left(3a+3\right)}.
\frac{a-3}{3\left(a-1\right)}+\frac{1}{a-1}
Cancel out \left(a+1\right)^{2} in both numerator and denominator.
\frac{a-3}{3\left(a-1\right)}+\frac{3}{3\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-1\right) and a-1 is 3\left(a-1\right). Multiply \frac{1}{a-1} times \frac{3}{3}.
\frac{a-3+3}{3\left(a-1\right)}
Since \frac{a-3}{3\left(a-1\right)} and \frac{3}{3\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{a}{3\left(a-1\right)}
Combine like terms in a-3+3.
\frac{a}{3a-3}
Expand 3\left(a-1\right).