Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a-2}{a\times 3}-\frac{a-1}{\left(a+2\right)^{2}}
Add 1 and 2 to get 3.
\frac{\left(a-2\right)\left(a+2\right)^{2}}{3a\left(a+2\right)^{2}}-\frac{\left(a-1\right)\times 3a}{3a\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\times 3 and \left(a+2\right)^{2} is 3a\left(a+2\right)^{2}. Multiply \frac{a-2}{a\times 3} times \frac{\left(a+2\right)^{2}}{\left(a+2\right)^{2}}. Multiply \frac{a-1}{\left(a+2\right)^{2}} times \frac{3a}{3a}.
\frac{\left(a-2\right)\left(a+2\right)^{2}-\left(a-1\right)\times 3a}{3a\left(a+2\right)^{2}}
Since \frac{\left(a-2\right)\left(a+2\right)^{2}}{3a\left(a+2\right)^{2}} and \frac{\left(a-1\right)\times 3a}{3a\left(a+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+4a^{2}+4a-2a^{2}-8a-8-3a^{2}+3a}{3a\left(a+2\right)^{2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)^{2}-\left(a-1\right)\times 3a.
\frac{a^{3}-a^{2}-a-8}{3a\left(a+2\right)^{2}}
Combine like terms in a^{3}+4a^{2}+4a-2a^{2}-8a-8-3a^{2}+3a.
\frac{a^{3}-a^{2}-a-8}{3a^{3}+12a^{2}+12a}
Expand 3a\left(a+2\right)^{2}.
\frac{a-2}{a\times 3}-\frac{a-1}{\left(a+2\right)^{2}}
Add 1 and 2 to get 3.
\frac{\left(a-2\right)\left(a+2\right)^{2}}{3a\left(a+2\right)^{2}}-\frac{\left(a-1\right)\times 3a}{3a\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\times 3 and \left(a+2\right)^{2} is 3a\left(a+2\right)^{2}. Multiply \frac{a-2}{a\times 3} times \frac{\left(a+2\right)^{2}}{\left(a+2\right)^{2}}. Multiply \frac{a-1}{\left(a+2\right)^{2}} times \frac{3a}{3a}.
\frac{\left(a-2\right)\left(a+2\right)^{2}-\left(a-1\right)\times 3a}{3a\left(a+2\right)^{2}}
Since \frac{\left(a-2\right)\left(a+2\right)^{2}}{3a\left(a+2\right)^{2}} and \frac{\left(a-1\right)\times 3a}{3a\left(a+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+4a^{2}+4a-2a^{2}-8a-8-3a^{2}+3a}{3a\left(a+2\right)^{2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)^{2}-\left(a-1\right)\times 3a.
\frac{a^{3}-a^{2}-a-8}{3a\left(a+2\right)^{2}}
Combine like terms in a^{3}+4a^{2}+4a-2a^{2}-8a-8-3a^{2}+3a.
\frac{a^{3}-a^{2}-a-8}{3a^{3}+12a^{2}+12a}
Expand 3a\left(a+2\right)^{2}.