Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a-2}{a^{2}-1}}{\frac{\left(a-1\right)\left(a+1\right)}{a+1}-\frac{2a-1}{a+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a+1}{a+1}.
\frac{\frac{a-2}{a^{2}-1}}{\frac{\left(a-1\right)\left(a+1\right)-\left(2a-1\right)}{a+1}}
Since \frac{\left(a-1\right)\left(a+1\right)}{a+1} and \frac{2a-1}{a+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a-2}{a^{2}-1}}{\frac{a^{2}+a-a-1-2a+1}{a+1}}
Do the multiplications in \left(a-1\right)\left(a+1\right)-\left(2a-1\right).
\frac{\frac{a-2}{a^{2}-1}}{\frac{a^{2}-2a}{a+1}}
Combine like terms in a^{2}+a-a-1-2a+1.
\frac{\left(a-2\right)\left(a+1\right)}{\left(a^{2}-1\right)\left(a^{2}-2a\right)}
Divide \frac{a-2}{a^{2}-1} by \frac{a^{2}-2a}{a+1} by multiplying \frac{a-2}{a^{2}-1} by the reciprocal of \frac{a^{2}-2a}{a+1}.
\frac{\left(a-2\right)\left(a+1\right)}{a\left(a-2\right)\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{1}{a\left(a-1\right)}
Cancel out \left(a-2\right)\left(a+1\right) in both numerator and denominator.
\frac{1}{a^{2}-a}
Expand the expression.
\frac{\frac{a-2}{a^{2}-1}}{\frac{\left(a-1\right)\left(a+1\right)}{a+1}-\frac{2a-1}{a+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a+1}{a+1}.
\frac{\frac{a-2}{a^{2}-1}}{\frac{\left(a-1\right)\left(a+1\right)-\left(2a-1\right)}{a+1}}
Since \frac{\left(a-1\right)\left(a+1\right)}{a+1} and \frac{2a-1}{a+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a-2}{a^{2}-1}}{\frac{a^{2}+a-a-1-2a+1}{a+1}}
Do the multiplications in \left(a-1\right)\left(a+1\right)-\left(2a-1\right).
\frac{\frac{a-2}{a^{2}-1}}{\frac{a^{2}-2a}{a+1}}
Combine like terms in a^{2}+a-a-1-2a+1.
\frac{\left(a-2\right)\left(a+1\right)}{\left(a^{2}-1\right)\left(a^{2}-2a\right)}
Divide \frac{a-2}{a^{2}-1} by \frac{a^{2}-2a}{a+1} by multiplying \frac{a-2}{a^{2}-1} by the reciprocal of \frac{a^{2}-2a}{a+1}.
\frac{\left(a-2\right)\left(a+1\right)}{a\left(a-2\right)\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{1}{a\left(a-1\right)}
Cancel out \left(a-2\right)\left(a+1\right) in both numerator and denominator.
\frac{1}{a^{2}-a}
Expand the expression.