Evaluate
\frac{a-4}{a\left(a+2\right)^{2}}
Expand
\frac{a-4}{a\left(a+2\right)^{2}}
Share
Copied to clipboard
\frac{a-2}{a\left(a+2\right)}-\frac{a-1}{\left(a+2\right)^{2}}
Factor a^{2}+2a. Factor a^{2}+4a+4.
\frac{\left(a-2\right)\left(a+2\right)}{a\left(a+2\right)^{2}}-\frac{\left(a-1\right)a}{a\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+2\right) and \left(a+2\right)^{2} is a\left(a+2\right)^{2}. Multiply \frac{a-2}{a\left(a+2\right)} times \frac{a+2}{a+2}. Multiply \frac{a-1}{\left(a+2\right)^{2}} times \frac{a}{a}.
\frac{\left(a-2\right)\left(a+2\right)-\left(a-1\right)a}{a\left(a+2\right)^{2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{a\left(a+2\right)^{2}} and \frac{\left(a-1\right)a}{a\left(a+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a-2a-4-a^{2}+a}{a\left(a+2\right)^{2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)-\left(a-1\right)a.
\frac{a-4}{a\left(a+2\right)^{2}}
Combine like terms in a^{2}+2a-2a-4-a^{2}+a.
\frac{a-4}{a^{3}+4a^{2}+4a}
Expand a\left(a+2\right)^{2}.
\frac{a-2}{a\left(a+2\right)}-\frac{a-1}{\left(a+2\right)^{2}}
Factor a^{2}+2a. Factor a^{2}+4a+4.
\frac{\left(a-2\right)\left(a+2\right)}{a\left(a+2\right)^{2}}-\frac{\left(a-1\right)a}{a\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+2\right) and \left(a+2\right)^{2} is a\left(a+2\right)^{2}. Multiply \frac{a-2}{a\left(a+2\right)} times \frac{a+2}{a+2}. Multiply \frac{a-1}{\left(a+2\right)^{2}} times \frac{a}{a}.
\frac{\left(a-2\right)\left(a+2\right)-\left(a-1\right)a}{a\left(a+2\right)^{2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{a\left(a+2\right)^{2}} and \frac{\left(a-1\right)a}{a\left(a+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a-2a-4-a^{2}+a}{a\left(a+2\right)^{2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)-\left(a-1\right)a.
\frac{a-4}{a\left(a+2\right)^{2}}
Combine like terms in a^{2}+2a-2a-4-a^{2}+a.
\frac{a-4}{a^{3}+4a^{2}+4a}
Expand a\left(a+2\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}