Solve for a
a = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
a-1=\left(a-1\right)^{2}\times 3
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(a-1\right)^{2}.
a-1=\left(a^{2}-2a+1\right)\times 3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
a-1=3a^{2}-6a+3
Use the distributive property to multiply a^{2}-2a+1 by 3.
a-1-3a^{2}=-6a+3
Subtract 3a^{2} from both sides.
a-1-3a^{2}+6a=3
Add 6a to both sides.
7a-1-3a^{2}=3
Combine a and 6a to get 7a.
7a-1-3a^{2}-3=0
Subtract 3 from both sides.
7a-4-3a^{2}=0
Subtract 3 from -1 to get -4.
-3a^{2}+7a-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=-3\left(-4\right)=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3a^{2}+aa+ba-4. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=4 b=3
The solution is the pair that gives sum 7.
\left(-3a^{2}+4a\right)+\left(3a-4\right)
Rewrite -3a^{2}+7a-4 as \left(-3a^{2}+4a\right)+\left(3a-4\right).
-a\left(3a-4\right)+3a-4
Factor out -a in -3a^{2}+4a.
\left(3a-4\right)\left(-a+1\right)
Factor out common term 3a-4 by using distributive property.
a=\frac{4}{3} a=1
To find equation solutions, solve 3a-4=0 and -a+1=0.
a=\frac{4}{3}
Variable a cannot be equal to 1.
a-1=\left(a-1\right)^{2}\times 3
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(a-1\right)^{2}.
a-1=\left(a^{2}-2a+1\right)\times 3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
a-1=3a^{2}-6a+3
Use the distributive property to multiply a^{2}-2a+1 by 3.
a-1-3a^{2}=-6a+3
Subtract 3a^{2} from both sides.
a-1-3a^{2}+6a=3
Add 6a to both sides.
7a-1-3a^{2}=3
Combine a and 6a to get 7a.
7a-1-3a^{2}-3=0
Subtract 3 from both sides.
7a-4-3a^{2}=0
Subtract 3 from -1 to get -4.
-3a^{2}+7a-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 7 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-7±\sqrt{49-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Square 7.
a=\frac{-7±\sqrt{49+12\left(-4\right)}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-7±\sqrt{49-48}}{2\left(-3\right)}
Multiply 12 times -4.
a=\frac{-7±\sqrt{1}}{2\left(-3\right)}
Add 49 to -48.
a=\frac{-7±1}{2\left(-3\right)}
Take the square root of 1.
a=\frac{-7±1}{-6}
Multiply 2 times -3.
a=-\frac{6}{-6}
Now solve the equation a=\frac{-7±1}{-6} when ± is plus. Add -7 to 1.
a=1
Divide -6 by -6.
a=-\frac{8}{-6}
Now solve the equation a=\frac{-7±1}{-6} when ± is minus. Subtract 1 from -7.
a=\frac{4}{3}
Reduce the fraction \frac{-8}{-6} to lowest terms by extracting and canceling out 2.
a=1 a=\frac{4}{3}
The equation is now solved.
a=\frac{4}{3}
Variable a cannot be equal to 1.
a-1=\left(a-1\right)^{2}\times 3
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(a-1\right)^{2}.
a-1=\left(a^{2}-2a+1\right)\times 3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
a-1=3a^{2}-6a+3
Use the distributive property to multiply a^{2}-2a+1 by 3.
a-1-3a^{2}=-6a+3
Subtract 3a^{2} from both sides.
a-1-3a^{2}+6a=3
Add 6a to both sides.
7a-1-3a^{2}=3
Combine a and 6a to get 7a.
7a-3a^{2}=3+1
Add 1 to both sides.
7a-3a^{2}=4
Add 3 and 1 to get 4.
-3a^{2}+7a=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3a^{2}+7a}{-3}=\frac{4}{-3}
Divide both sides by -3.
a^{2}+\frac{7}{-3}a=\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}-\frac{7}{3}a=\frac{4}{-3}
Divide 7 by -3.
a^{2}-\frac{7}{3}a=-\frac{4}{3}
Divide 4 by -3.
a^{2}-\frac{7}{3}a+\left(-\frac{7}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{7}{3}a+\frac{49}{36}=-\frac{4}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{7}{3}a+\frac{49}{36}=\frac{1}{36}
Add -\frac{4}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{7}{6}\right)^{2}=\frac{1}{36}
Factor a^{2}-\frac{7}{3}a+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{7}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
a-\frac{7}{6}=\frac{1}{6} a-\frac{7}{6}=-\frac{1}{6}
Simplify.
a=\frac{4}{3} a=1
Add \frac{7}{6} to both sides of the equation.
a=\frac{4}{3}
Variable a cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}