Solve for a (complex solution)
a\in \mathrm{C}\setminus -1,0,1
Solve for a
a\in \mathrm{R}\setminus -1,0,1
Share
Copied to clipboard
\left(2a-2\right)\left(a-1\right)-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Variable a cannot be equal to any of the values -1,0,1 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-1\right)\left(a+1\right), the least common multiple of a^{2}+a,2a-2,2a+2,a\left(a^{2}-1\right).
2a^{2}-4a+2-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply 2a-2 by a-1 and combine like terms.
2a^{2}-4a+2-\left(a^{2}+a\right)-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply a+1 by a.
2a^{2}-4a+2-a^{2}-a-\left(a-1\right)a=2\left(1-2a\right)
To find the opposite of a^{2}+a, find the opposite of each term.
a^{2}-4a+2-a-\left(a-1\right)a=2\left(1-2a\right)
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-5a+2-\left(a-1\right)a=2\left(1-2a\right)
Combine -4a and -a to get -5a.
a^{2}-5a+2-\left(a^{2}-a\right)=2\left(1-2a\right)
Use the distributive property to multiply a-1 by a.
a^{2}-5a+2-a^{2}+a=2\left(1-2a\right)
To find the opposite of a^{2}-a, find the opposite of each term.
-5a+2+a=2\left(1-2a\right)
Combine a^{2} and -a^{2} to get 0.
-4a+2=2\left(1-2a\right)
Combine -5a and a to get -4a.
-4a+2=2-4a
Use the distributive property to multiply 2 by 1-2a.
-4a+2-2=-4a
Subtract 2 from both sides.
-4a=-4a
Subtract 2 from 2 to get 0.
-4a+4a=0
Add 4a to both sides.
0=0
Combine -4a and 4a to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{C}
This is true for any a.
a\in \mathrm{C}\setminus -1,0,1
Variable a cannot be equal to any of the values -1,1,0.
\left(2a-2\right)\left(a-1\right)-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Variable a cannot be equal to any of the values -1,0,1 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-1\right)\left(a+1\right), the least common multiple of a^{2}+a,2a-2,2a+2,a\left(a^{2}-1\right).
2a^{2}-4a+2-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply 2a-2 by a-1 and combine like terms.
2a^{2}-4a+2-\left(a^{2}+a\right)-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply a+1 by a.
2a^{2}-4a+2-a^{2}-a-\left(a-1\right)a=2\left(1-2a\right)
To find the opposite of a^{2}+a, find the opposite of each term.
a^{2}-4a+2-a-\left(a-1\right)a=2\left(1-2a\right)
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-5a+2-\left(a-1\right)a=2\left(1-2a\right)
Combine -4a and -a to get -5a.
a^{2}-5a+2-\left(a^{2}-a\right)=2\left(1-2a\right)
Use the distributive property to multiply a-1 by a.
a^{2}-5a+2-a^{2}+a=2\left(1-2a\right)
To find the opposite of a^{2}-a, find the opposite of each term.
-5a+2+a=2\left(1-2a\right)
Combine a^{2} and -a^{2} to get 0.
-4a+2=2\left(1-2a\right)
Combine -5a and a to get -4a.
-4a+2=2-4a
Use the distributive property to multiply 2 by 1-2a.
-4a+2-2=-4a
Subtract 2 from both sides.
-4a=-4a
Subtract 2 from 2 to get 0.
-4a+4a=0
Add 4a to both sides.
0=0
Combine -4a and 4a to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{R}
This is true for any a.
a\in \mathrm{R}\setminus -1,0,1
Variable a cannot be equal to any of the values -1,1,0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}