Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(2a-2\right)\left(a-1\right)-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Variable a cannot be equal to any of the values -1,0,1 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-1\right)\left(a+1\right), the least common multiple of a^{2}+a,2a-2,2a+2,a\left(a^{2}-1\right).
2a^{2}-4a+2-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply 2a-2 by a-1 and combine like terms.
2a^{2}-4a+2-\left(a^{2}+a\right)-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply a+1 by a.
2a^{2}-4a+2-a^{2}-a-\left(a-1\right)a=2\left(1-2a\right)
To find the opposite of a^{2}+a, find the opposite of each term.
a^{2}-4a+2-a-\left(a-1\right)a=2\left(1-2a\right)
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-5a+2-\left(a-1\right)a=2\left(1-2a\right)
Combine -4a and -a to get -5a.
a^{2}-5a+2-\left(a^{2}-a\right)=2\left(1-2a\right)
Use the distributive property to multiply a-1 by a.
a^{2}-5a+2-a^{2}+a=2\left(1-2a\right)
To find the opposite of a^{2}-a, find the opposite of each term.
-5a+2+a=2\left(1-2a\right)
Combine a^{2} and -a^{2} to get 0.
-4a+2=2\left(1-2a\right)
Combine -5a and a to get -4a.
-4a+2=2-4a
Use the distributive property to multiply 2 by 1-2a.
-4a+2-2=-4a
Subtract 2 from both sides.
-4a=-4a
Subtract 2 from 2 to get 0.
-4a+4a=0
Add 4a to both sides.
0=0
Combine -4a and 4a to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{C}
This is true for any a.
a\in \mathrm{C}\setminus -1,0,1
Variable a cannot be equal to any of the values -1,1,0.
\left(2a-2\right)\left(a-1\right)-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Variable a cannot be equal to any of the values -1,0,1 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-1\right)\left(a+1\right), the least common multiple of a^{2}+a,2a-2,2a+2,a\left(a^{2}-1\right).
2a^{2}-4a+2-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply 2a-2 by a-1 and combine like terms.
2a^{2}-4a+2-\left(a^{2}+a\right)-\left(a-1\right)a=2\left(1-2a\right)
Use the distributive property to multiply a+1 by a.
2a^{2}-4a+2-a^{2}-a-\left(a-1\right)a=2\left(1-2a\right)
To find the opposite of a^{2}+a, find the opposite of each term.
a^{2}-4a+2-a-\left(a-1\right)a=2\left(1-2a\right)
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-5a+2-\left(a-1\right)a=2\left(1-2a\right)
Combine -4a and -a to get -5a.
a^{2}-5a+2-\left(a^{2}-a\right)=2\left(1-2a\right)
Use the distributive property to multiply a-1 by a.
a^{2}-5a+2-a^{2}+a=2\left(1-2a\right)
To find the opposite of a^{2}-a, find the opposite of each term.
-5a+2+a=2\left(1-2a\right)
Combine a^{2} and -a^{2} to get 0.
-4a+2=2\left(1-2a\right)
Combine -5a and a to get -4a.
-4a+2=2-4a
Use the distributive property to multiply 2 by 1-2a.
-4a+2-2=-4a
Subtract 2 from both sides.
-4a=-4a
Subtract 2 from 2 to get 0.
-4a+4a=0
Add 4a to both sides.
0=0
Combine -4a and 4a to get 0.
\text{true}
Compare 0 and 0.
a\in \mathrm{R}
This is true for any a.
a\in \mathrm{R}\setminus -1,0,1
Variable a cannot be equal to any of the values -1,1,0.