Solve for a
a<-115
Share
Copied to clipboard
3\left(a-1\right)-12>4\left(a+1\right)+96
Multiply both sides of the equation by 12, the least common multiple of 4,3. Since 12 is positive, the inequality direction remains the same.
3a-3-12>4\left(a+1\right)+96
Use the distributive property to multiply 3 by a-1.
3a-15>4\left(a+1\right)+96
Subtract 12 from -3 to get -15.
3a-15>4a+4+96
Use the distributive property to multiply 4 by a+1.
3a-15>4a+100
Add 4 and 96 to get 100.
3a-15-4a>100
Subtract 4a from both sides.
-a-15>100
Combine 3a and -4a to get -a.
-a>100+15
Add 15 to both sides.
-a>115
Add 100 and 15 to get 115.
a<-115
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}