Evaluate
-b
Expand
-b
Share
Copied to clipboard
\frac{a\left(-3a+b\right)^{2}}{a\left(3a-b\right)}-3a
Factor the expressions that are not already factored in \frac{a\left(b-3a\right)^{2}}{3a^{2}-ab}.
\frac{\left(-3a+b\right)^{2}}{3a-b}-3a
Cancel out a in both numerator and denominator.
\frac{\left(-3a+b\right)^{2}}{3a-b}+\frac{-3a\left(3a-b\right)}{3a-b}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3a times \frac{3a-b}{3a-b}.
\frac{\left(-3a+b\right)^{2}-3a\left(3a-b\right)}{3a-b}
Since \frac{\left(-3a+b\right)^{2}}{3a-b} and \frac{-3a\left(3a-b\right)}{3a-b} have the same denominator, add them by adding their numerators.
\frac{9a^{2}-6ab+b^{2}-9a^{2}+3ab}{3a-b}
Do the multiplications in \left(-3a+b\right)^{2}-3a\left(3a-b\right).
\frac{b^{2}-3ab}{3a-b}
Combine like terms in 9a^{2}-6ab+b^{2}-9a^{2}+3ab.
\frac{b\left(-3a+b\right)}{3a-b}
Factor the expressions that are not already factored in \frac{b^{2}-3ab}{3a-b}.
\frac{-b\left(3a-b\right)}{3a-b}
Extract the negative sign in b-3a.
-b
Cancel out 3a-b in both numerator and denominator.
\frac{a\left(-3a+b\right)^{2}}{a\left(3a-b\right)}-3a
Factor the expressions that are not already factored in \frac{a\left(b-3a\right)^{2}}{3a^{2}-ab}.
\frac{\left(-3a+b\right)^{2}}{3a-b}-3a
Cancel out a in both numerator and denominator.
\frac{\left(-3a+b\right)^{2}}{3a-b}+\frac{-3a\left(3a-b\right)}{3a-b}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3a times \frac{3a-b}{3a-b}.
\frac{\left(-3a+b\right)^{2}-3a\left(3a-b\right)}{3a-b}
Since \frac{\left(-3a+b\right)^{2}}{3a-b} and \frac{-3a\left(3a-b\right)}{3a-b} have the same denominator, add them by adding their numerators.
\frac{9a^{2}-6ab+b^{2}-9a^{2}+3ab}{3a-b}
Do the multiplications in \left(-3a+b\right)^{2}-3a\left(3a-b\right).
\frac{b^{2}-3ab}{3a-b}
Combine like terms in 9a^{2}-6ab+b^{2}-9a^{2}+3ab.
\frac{b\left(-3a+b\right)}{3a-b}
Factor the expressions that are not already factored in \frac{b^{2}-3ab}{3a-b}.
\frac{-b\left(3a-b\right)}{3a-b}
Extract the negative sign in b-3a.
-b
Cancel out 3a-b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}