Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(-3a+b\right)^{2}}{a\left(3a-b\right)}-3a
Factor the expressions that are not already factored in \frac{a\left(b-3a\right)^{2}}{3a^{2}-ab}.
\frac{\left(-3a+b\right)^{2}}{3a-b}-3a
Cancel out a in both numerator and denominator.
\frac{\left(-3a+b\right)^{2}}{3a-b}+\frac{-3a\left(3a-b\right)}{3a-b}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3a times \frac{3a-b}{3a-b}.
\frac{\left(-3a+b\right)^{2}-3a\left(3a-b\right)}{3a-b}
Since \frac{\left(-3a+b\right)^{2}}{3a-b} and \frac{-3a\left(3a-b\right)}{3a-b} have the same denominator, add them by adding their numerators.
\frac{9a^{2}-6ab+b^{2}-9a^{2}+3ab}{3a-b}
Do the multiplications in \left(-3a+b\right)^{2}-3a\left(3a-b\right).
\frac{b^{2}-3ab}{3a-b}
Combine like terms in 9a^{2}-6ab+b^{2}-9a^{2}+3ab.
\frac{b\left(-3a+b\right)}{3a-b}
Factor the expressions that are not already factored in \frac{b^{2}-3ab}{3a-b}.
\frac{-b\left(3a-b\right)}{3a-b}
Extract the negative sign in b-3a.
-b
Cancel out 3a-b in both numerator and denominator.
\frac{a\left(-3a+b\right)^{2}}{a\left(3a-b\right)}-3a
Factor the expressions that are not already factored in \frac{a\left(b-3a\right)^{2}}{3a^{2}-ab}.
\frac{\left(-3a+b\right)^{2}}{3a-b}-3a
Cancel out a in both numerator and denominator.
\frac{\left(-3a+b\right)^{2}}{3a-b}+\frac{-3a\left(3a-b\right)}{3a-b}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3a times \frac{3a-b}{3a-b}.
\frac{\left(-3a+b\right)^{2}-3a\left(3a-b\right)}{3a-b}
Since \frac{\left(-3a+b\right)^{2}}{3a-b} and \frac{-3a\left(3a-b\right)}{3a-b} have the same denominator, add them by adding their numerators.
\frac{9a^{2}-6ab+b^{2}-9a^{2}+3ab}{3a-b}
Do the multiplications in \left(-3a+b\right)^{2}-3a\left(3a-b\right).
\frac{b^{2}-3ab}{3a-b}
Combine like terms in 9a^{2}-6ab+b^{2}-9a^{2}+3ab.
\frac{b\left(-3a+b\right)}{3a-b}
Factor the expressions that are not already factored in \frac{b^{2}-3ab}{3a-b}.
\frac{-b\left(3a-b\right)}{3a-b}
Extract the negative sign in b-3a.
-b
Cancel out 3a-b in both numerator and denominator.