Solve for a
a=-\frac{40}{b+8}
b\neq -8
Solve for b
b=-8-\frac{40}{a}
a\neq 0
Share
Copied to clipboard
a\left(b+8\right)=-4\times 10
Multiply both sides of the equation by -4.
ab+8a=-4\times 10
Use the distributive property to multiply a by b+8.
ab+8a=-40
Multiply -4 and 10 to get -40.
\left(b+8\right)a=-40
Combine all terms containing a.
\frac{\left(b+8\right)a}{b+8}=-\frac{40}{b+8}
Divide both sides by b+8.
a=-\frac{40}{b+8}
Dividing by b+8 undoes the multiplication by b+8.
a\left(b+8\right)=-4\times 10
Multiply both sides of the equation by -4.
ab+8a=-4\times 10
Use the distributive property to multiply a by b+8.
ab+8a=-40
Multiply -4 and 10 to get -40.
ab=-40-8a
Subtract 8a from both sides.
ab=-8a-40
The equation is in standard form.
\frac{ab}{a}=\frac{-8a-40}{a}
Divide both sides by a.
b=\frac{-8a-40}{a}
Dividing by a undoes the multiplication by a.
b=-8-\frac{40}{a}
Divide -40-8a by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}