Evaluate
\left(1+\frac{1}{a}\right)^{2}
Expand
1+\frac{2}{a}+\frac{1}{a^{2}}
Share
Copied to clipboard
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a^{2}+a}{a^{2}-a}}
Multiply \frac{a\left(a+1\right)+a+1}{a^{2}-2a+1} times \frac{a^{2}-1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a\left(a+1\right)}{a\left(a-1\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+a}{a^{2}-a}.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a+1}{a-1}}
Cancel out a in both numerator and denominator.
\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)\left(a-1\right)}{\left(a^{2}-2a+1\right)a^{2}\left(a+1\right)}
Divide \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by \frac{a+1}{a-1} by multiplying \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by the reciprocal of \frac{a+1}{a-1}.
\frac{\left(a+1\right)\left(a-1\right)^{2}\left(a+1\right)^{2}}{\left(a+1\right)a^{2}\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(a+1\right)^{2}}{a^{2}}
Cancel out \left(a+1\right)\left(a-1\right)^{2} in both numerator and denominator.
\frac{a^{2}+2a+1}{a^{2}}
Expand the expression.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a^{2}+a}{a^{2}-a}}
Multiply \frac{a\left(a+1\right)+a+1}{a^{2}-2a+1} times \frac{a^{2}-1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a\left(a+1\right)}{a\left(a-1\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+a}{a^{2}-a}.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a+1}{a-1}}
Cancel out a in both numerator and denominator.
\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)\left(a-1\right)}{\left(a^{2}-2a+1\right)a^{2}\left(a+1\right)}
Divide \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by \frac{a+1}{a-1} by multiplying \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by the reciprocal of \frac{a+1}{a-1}.
\frac{\left(a+1\right)\left(a-1\right)^{2}\left(a+1\right)^{2}}{\left(a+1\right)a^{2}\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(a+1\right)^{2}}{a^{2}}
Cancel out \left(a+1\right)\left(a-1\right)^{2} in both numerator and denominator.
\frac{a^{2}+2a+1}{a^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}