Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a^{2}+a}{a^{2}-a}}
Multiply \frac{a\left(a+1\right)+a+1}{a^{2}-2a+1} times \frac{a^{2}-1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a\left(a+1\right)}{a\left(a-1\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+a}{a^{2}-a}.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a+1}{a-1}}
Cancel out a in both numerator and denominator.
\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)\left(a-1\right)}{\left(a^{2}-2a+1\right)a^{2}\left(a+1\right)}
Divide \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by \frac{a+1}{a-1} by multiplying \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by the reciprocal of \frac{a+1}{a-1}.
\frac{\left(a+1\right)\left(a-1\right)^{2}\left(a+1\right)^{2}}{\left(a+1\right)a^{2}\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(a+1\right)^{2}}{a^{2}}
Cancel out \left(a+1\right)\left(a-1\right)^{2} in both numerator and denominator.
\frac{a^{2}+2a+1}{a^{2}}
Expand the expression.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a^{2}+a}{a^{2}-a}}
Multiply \frac{a\left(a+1\right)+a+1}{a^{2}-2a+1} times \frac{a^{2}-1}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a\left(a+1\right)}{a\left(a-1\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+a}{a^{2}-a}.
\frac{\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}}}{\frac{a+1}{a-1}}
Cancel out a in both numerator and denominator.
\frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)\left(a-1\right)}{\left(a^{2}-2a+1\right)a^{2}\left(a+1\right)}
Divide \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by \frac{a+1}{a-1} by multiplying \frac{\left(a\left(a+1\right)+a+1\right)\left(a^{2}-1\right)}{\left(a^{2}-2a+1\right)a^{2}} by the reciprocal of \frac{a+1}{a-1}.
\frac{\left(a+1\right)\left(a-1\right)^{2}\left(a+1\right)^{2}}{\left(a+1\right)a^{2}\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(a+1\right)^{2}}{a^{2}}
Cancel out \left(a+1\right)\left(a-1\right)^{2} in both numerator and denominator.
\frac{a^{2}+2a+1}{a^{2}}
Expand the expression.