Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a}{3}-\frac{b^{2}}{a-b}
Factor 3a-3b.
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-b\right) and 3 is 3\left(a-b\right). Multiply \frac{a}{3} times \frac{a-b}{a-b}.
\frac{a\left(4a-b\right)-a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Since \frac{a\left(4a-b\right)}{3\left(a-b\right)} and \frac{a\left(a-b\right)}{3\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-ab-a^{2}+ab}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Do the multiplications in a\left(4a-b\right)-a\left(a-b\right).
\frac{3a^{2}}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Combine like terms in 4a^{2}-ab-a^{2}+ab.
\frac{a^{2}}{a-b}-\frac{b^{2}}{a-b}
Cancel out 3 in both numerator and denominator.
\frac{a^{2}-b^{2}}{a-b}
Since \frac{a^{2}}{a-b} and \frac{b^{2}}{a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a+b\right)\left(a-b\right)}{a-b}
Factor the expressions that are not already factored in \frac{a^{2}-b^{2}}{a-b}.
a+b
Cancel out a-b in both numerator and denominator.
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a}{3}-\frac{b^{2}}{a-b}
Factor 3a-3b.
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-b\right) and 3 is 3\left(a-b\right). Multiply \frac{a}{3} times \frac{a-b}{a-b}.
\frac{a\left(4a-b\right)-a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Since \frac{a\left(4a-b\right)}{3\left(a-b\right)} and \frac{a\left(a-b\right)}{3\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-ab-a^{2}+ab}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Do the multiplications in a\left(4a-b\right)-a\left(a-b\right).
\frac{3a^{2}}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Combine like terms in 4a^{2}-ab-a^{2}+ab.
\frac{a^{2}}{a-b}-\frac{b^{2}}{a-b}
Cancel out 3 in both numerator and denominator.
\frac{a^{2}-b^{2}}{a-b}
Since \frac{a^{2}}{a-b} and \frac{b^{2}}{a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a+b\right)\left(a-b\right)}{a-b}
Factor the expressions that are not already factored in \frac{a^{2}-b^{2}}{a-b}.
a+b
Cancel out a-b in both numerator and denominator.