Evaluate
a+b
Expand
a+b
Share
Copied to clipboard
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a}{3}-\frac{b^{2}}{a-b}
Factor 3a-3b.
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-b\right) and 3 is 3\left(a-b\right). Multiply \frac{a}{3} times \frac{a-b}{a-b}.
\frac{a\left(4a-b\right)-a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Since \frac{a\left(4a-b\right)}{3\left(a-b\right)} and \frac{a\left(a-b\right)}{3\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-ab-a^{2}+ab}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Do the multiplications in a\left(4a-b\right)-a\left(a-b\right).
\frac{3a^{2}}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Combine like terms in 4a^{2}-ab-a^{2}+ab.
\frac{a^{2}}{a-b}-\frac{b^{2}}{a-b}
Cancel out 3 in both numerator and denominator.
\frac{a^{2}-b^{2}}{a-b}
Since \frac{a^{2}}{a-b} and \frac{b^{2}}{a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a+b\right)\left(a-b\right)}{a-b}
Factor the expressions that are not already factored in \frac{a^{2}-b^{2}}{a-b}.
a+b
Cancel out a-b in both numerator and denominator.
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a}{3}-\frac{b^{2}}{a-b}
Factor 3a-3b.
\frac{a\left(4a-b\right)}{3\left(a-b\right)}-\frac{a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-b\right) and 3 is 3\left(a-b\right). Multiply \frac{a}{3} times \frac{a-b}{a-b}.
\frac{a\left(4a-b\right)-a\left(a-b\right)}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Since \frac{a\left(4a-b\right)}{3\left(a-b\right)} and \frac{a\left(a-b\right)}{3\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-ab-a^{2}+ab}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Do the multiplications in a\left(4a-b\right)-a\left(a-b\right).
\frac{3a^{2}}{3\left(a-b\right)}-\frac{b^{2}}{a-b}
Combine like terms in 4a^{2}-ab-a^{2}+ab.
\frac{a^{2}}{a-b}-\frac{b^{2}}{a-b}
Cancel out 3 in both numerator and denominator.
\frac{a^{2}-b^{2}}{a-b}
Since \frac{a^{2}}{a-b} and \frac{b^{2}}{a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(a+b\right)\left(a-b\right)}{a-b}
Factor the expressions that are not already factored in \frac{a^{2}-b^{2}}{a-b}.
a+b
Cancel out a-b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}