Solve for a (complex solution)
a=3
x\neq 1\text{ and }x\neq -1
Solve for x (complex solution)
x\in \mathrm{C}\setminus 1,-1
a=3
Solve for a
a=3
|x|\neq 1
Solve for x
x\in \mathrm{R}\setminus 1,-1
a=3
Graph
Share
Copied to clipboard
\left(x+1\right)a-\left(x-1\right)=2x+4
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1,x^{2}-1.
xa+a-\left(x-1\right)=2x+4
Use the distributive property to multiply x+1 by a.
xa+a-x+1=2x+4
To find the opposite of x-1, find the opposite of each term.
xa+a+1=2x+4+x
Add x to both sides.
xa+a+1=3x+4
Combine 2x and x to get 3x.
xa+a=3x+4-1
Subtract 1 from both sides.
xa+a=3x+3
Subtract 1 from 4 to get 3.
\left(x+1\right)a=3x+3
Combine all terms containing a.
\frac{\left(x+1\right)a}{x+1}=\frac{3x+3}{x+1}
Divide both sides by x+1.
a=\frac{3x+3}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
a=3
Divide 3+3x by x+1.
\left(x+1\right)a-\left(x-1\right)=2x+4
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1,x^{2}-1.
xa+a-\left(x-1\right)=2x+4
Use the distributive property to multiply x+1 by a.
xa+a-x+1=2x+4
To find the opposite of x-1, find the opposite of each term.
xa+a-x+1-2x=4
Subtract 2x from both sides.
xa+a-3x+1=4
Combine -x and -2x to get -3x.
xa-3x+1=4-a
Subtract a from both sides.
xa-3x=4-a-1
Subtract 1 from both sides.
xa-3x=3-a
Subtract 1 from 4 to get 3.
\left(a-3\right)x=3-a
Combine all terms containing x.
\frac{\left(a-3\right)x}{a-3}=\frac{3-a}{a-3}
Divide both sides by -3+a.
x=\frac{3-a}{a-3}
Dividing by -3+a undoes the multiplication by -3+a.
x=-1
Divide 3-a by -3+a.
x\in \emptyset
Variable x cannot be equal to -1.
\left(x+1\right)a-\left(x-1\right)=2x+4
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1,x^{2}-1.
xa+a-\left(x-1\right)=2x+4
Use the distributive property to multiply x+1 by a.
xa+a-x+1=2x+4
To find the opposite of x-1, find the opposite of each term.
xa+a+1=2x+4+x
Add x to both sides.
xa+a+1=3x+4
Combine 2x and x to get 3x.
xa+a=3x+4-1
Subtract 1 from both sides.
xa+a=3x+3
Subtract 1 from 4 to get 3.
\left(x+1\right)a=3x+3
Combine all terms containing a.
\frac{\left(x+1\right)a}{x+1}=\frac{3x+3}{x+1}
Divide both sides by x+1.
a=\frac{3x+3}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
a=3
Divide 3+3x by x+1.
\left(x+1\right)a-\left(x-1\right)=2x+4
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1,x^{2}-1.
xa+a-\left(x-1\right)=2x+4
Use the distributive property to multiply x+1 by a.
xa+a-x+1=2x+4
To find the opposite of x-1, find the opposite of each term.
xa+a-x+1-2x=4
Subtract 2x from both sides.
xa+a-3x+1=4
Combine -x and -2x to get -3x.
xa-3x+1=4-a
Subtract a from both sides.
xa-3x=4-a-1
Subtract 1 from both sides.
xa-3x=3-a
Subtract 1 from 4 to get 3.
\left(a-3\right)x=3-a
Combine all terms containing x.
\frac{\left(a-3\right)x}{a-3}=\frac{3-a}{a-3}
Divide both sides by -3+a.
x=\frac{3-a}{a-3}
Dividing by -3+a undoes the multiplication by -3+a.
x=-1
Divide 3-a by -3+a.
x\in \emptyset
Variable x cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}