Solve for a
a=\frac{\left(x-1\right)^{2}}{x}
x\neq 1\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{-\sqrt{a\left(a+4\right)}+a+2}{2}
x=\frac{\sqrt{a\left(a+4\right)}+a+2}{2}\text{, }a\neq 0
Solve for x
x=\frac{-\sqrt{a\left(a+4\right)}+a+2}{2}
x=\frac{\sqrt{a\left(a+4\right)}+a+2}{2}\text{, }a\leq -4\text{ or }a>0
Graph
Share
Copied to clipboard
xa+x-1=x\left(x-1\right)
Multiply both sides of the equation by x\left(x-1\right), the least common multiple of x-1,x.
xa+x-1=x^{2}-x
Use the distributive property to multiply x by x-1.
xa-1=x^{2}-x-x
Subtract x from both sides.
xa-1=x^{2}-2x
Combine -x and -x to get -2x.
xa=x^{2}-2x+1
Add 1 to both sides.
\frac{xa}{x}=\frac{\left(x-1\right)^{2}}{x}
Divide both sides by x.
a=\frac{\left(x-1\right)^{2}}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}